Publications by authors named "Kok Sing Lim"

Three-dimensional force-tactile sensors have attracted much attention for their great potential in the applications of human-computer interaction and bionic intelligent robotics. Herein, a flexible haptic sensor based on dual fiber Bragg gratings (FBGs) embedded in a bionic anisotropic material is proposed for the detection of 3D forces. To achieve the discrimination of normal and tangential force angles and magnitudes, FBGs were orthogonally embedded in a flexible silicone cylinder for force determination.

View Article and Find Full Text PDF

In this work, we proposed a sensitivity-enhanced temperature sensor, a compact harmonic Vernier sensor based on an in-fiber Fabry-Perot Interferometer (FPI), with three reflective interfaces for the measurement of gas temperature and pressure. FPI consists of air and silica cavities formulated by single-mode optical fiber (SMF) and several short hollow core fiber segments. One of the cavity lengths is deliberately made larger to excite several harmonics of the Vernier effect that have different sensitivity magnifications to the gas pressure and temperature.

View Article and Find Full Text PDF

Purpose: To investigate the efficacy of a newly-developed laser-heated core biopsy needle in the thermal ablation of biopsy tract to reduce hemorrhage after biopsy using in vivo rabbit's liver model.

Materials And Methods: Five male New Zealand White rabbits weighed between 1.5 and 4.

View Article and Find Full Text PDF

We demonstrated an optical fiber sensor based on a cascaded fiber Fabry-Perot interferometer (FPI)-regenerated fiber Bragg grating (RFBG) for simultaneous measurement of temperature and strain under high temperature environments. The FPI is manufactured from a ∼74 µm long hollow core silica tube (HCST) sandwiched between two single mode fibers (SMFs). The RFBG is inscribed in one of the SMF arms which is embedded inside an alundum tube, making it insensitive to the applied strain on the entire fiber sensor, just in case the temperature and strain recovery process are described using the strain-free RFBG instead of a characteristic due-parameter matrix.

View Article and Find Full Text PDF

We demonstrate an all-fiber structure that can realize LP-LP mode conversion and twist measurement. It is a thin-core fiber (TCF) grating at a wavelength of 1310 nm cascaded to a short segment of a TCF of a different core size. It is found that the different core size of the TCF between the fiber and the grating has an impact on the excitation of a higher-order mode and mode conversion efficiency.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of various computed tomography (CT) acquisition parameters and metal artifacts on CT number measurement for CT thermometry during CT-guided thermal ablation. The effects of tube voltage (100-140 kVp), tube current (20-250 mAs), pitch (0.6-1.

View Article and Find Full Text PDF

This work demonstrates thermal regeneration of gratings inscribed in a new type of multi-material glass-based photosensitive fiber. And isothermal annealing procedure has been carried out on a type-I seed grating (SG) imprinted in erbium-doped zirconia-yttria-alumina-germanium (Er-ZYAG) silica glass-based fiber, which is initiated from room temperature of 25°C up to 900°C. The findings show that the created regenerated grating (RG) has an ultrahigh thermal regeneration ratio with a value of 0.

View Article and Find Full Text PDF

Corrosion of steel bar is one of key factors undermining reinforced concrete (RC) structures in a harsh environment. This paper attempts to review the non-destructive procedures from the aspect of the corrosion measurement techniques, especially their advantages and limitations. Systematical classification of diagnostic methods is carried out to determine any probable corrosion issues before the structures become severe, and helps choose the suitable method according to different construction features.

View Article and Find Full Text PDF

In this work, we demonstrate the thermal regeneration of fiber Bragg gratings written in the hydrogenated standard communication optical fibers by two annealing processes. The first annealing process is done at an intermediate temperature (500°C, 700°C, and 900°C) for a specific period of time before cooling down to room temperature. The second annealing is at 1000°C in which the thermal regeneration is attained.

View Article and Find Full Text PDF

An in-fiber Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated for relative humidity (RH) and temperature measurements. The MZI is formed by a grapefruit-shaped photonic crystal fiber (G-PCF) cascaded with a short section of multimode fiber that serves as a mode coupler. To enhance sensitivity to humidity, femtosecond laser micromachining was performed to remove a portion of cladding of the G-PCF to expose its core to the ambient medium.

View Article and Find Full Text PDF

A Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber (PCF) and magnetic fluid (MF) was designed and experimentally demonstrated. The sensing probe consists of a single-mode-(SM)-multimode-PCF-SM fiber structure through arc fusion splicing. It was then laser engrave notched with the femtosecond laser so that the PCF cladding was selectively infilled MF.

View Article and Find Full Text PDF

In this work, we have proposed a sensor for strain measurement in high-temperature environments up to 800°C by employing two regenerated fiber Bragg gratings. Two seed gratings (SGs) are inscribed in high Ge-doped and B/Ge-codoped fibers, respectively, which possess different temperature sensitivities. To achieve two gratings with different strain sensitivities, one of the gratings is chemically etched to reduce the fiber diameter for strain sensitivity enhancement.

View Article and Find Full Text PDF

We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.

View Article and Find Full Text PDF

A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths.

View Article and Find Full Text PDF

An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths.

View Article and Find Full Text PDF

This paper describes a low pass filter based on photonics crystal fiber (PCF) partial ASE suppression, and its application within a 1.7 µm to 1.8 µm band thulium-doped fiber amplifier (TDFA) and a thulium-doped fiber laser (TDFL).

View Article and Find Full Text PDF

Grating inscription in a Ga-doped silica core fiber (~5 wt. % Ga) has been demonstrated using ArF (193 nm) and KrF (248 nm) excimer lasers. In a comparative study with germanosilicate fiber with similar Ge concentration, a Ga-doped silica core fiber shows greater photosensitivity to an ArF excimer laser due to the higher absorbance in the region of 190-195 nm.

View Article and Find Full Text PDF

In this study, a technique for measuring the grating visibility of the fiber Bragg grating (FBG) based on bent-spectral analysis is proposed. From varying ac and dc coupling coefficients at different bending radii, the grating visibility is estimated with the aid of a simple mathematical model. The investigation begins with the estimation of the grating visibility from the transmission spectra of the FBG during the inscription process.

View Article and Find Full Text PDF

In this work, we have demonstrated for the first time grating regeneration in hydrogenated fibers by direct CO(2) laser annealing. During the annealing process, the center wavelength redshifts as the intensity of the focused CO(2) laser on the grating is elevated. The reflectivity of the grating begins to decay as the temperature induced in the grating approaches the erasure temperature.

View Article and Find Full Text PDF

In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling.

View Article and Find Full Text PDF

Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers.

View Article and Find Full Text PDF

This Letter presents a simple mathematical model developed from coupled-mode theory to describe the relationship between Bragg transmission loss (BTL), grating length, coupling coefficients, and bending loss in a bent fiber Bragg grating. In our investigation, the finding indicates that the decrement of BTL can be attributed to the increasing bending loss and degradation of both dc and ac coupling coefficients as the bending radius decreases. Besides, the center wavelength shifts as a result of coupling coefficients degradation.

View Article and Find Full Text PDF

We present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm.

View Article and Find Full Text PDF

When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters.

View Article and Find Full Text PDF

Effects of immersing a microfiber knot resonator (MKR) in liquid solutions that have refractive indices close to that of silica are experimentally demonstrated and theoretically analyzed. Significant improvement in resonance extinction ratio within 2 to 10 dB was observed. To achieve a better understanding, a qualitative analysis of the coupling ratio and round-trip attenuation of the MKR is performed by using a curve-fitting method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session84vdn88hrsjde3jucs7gko1vhqf9rch9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once