Here we describe new fluorescent probes based on fluorescein and rhodamine that provide reversible, real-time insight into cellular redox status. The new probes incorporate bio-imaging relevant fluorophores derived from fluorescein and rhodamine linked with stable nitroxide radicals such that they cannot be cleaved, either spontaneously or enzymatically by cellular processes. Overall fluorescence emission is determined by reversible reduction and oxidation, hence the steady state emission intensity reflects the balance between redox potentials of critical redox couples within the cell.
View Article and Find Full Text PDFAutosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016), arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3) is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10) biosynthesis.
View Article and Find Full Text PDFIn this study we have isolated the follicle-stimulating hormone beta subunit gene from the Chinook salmon (csFSHbeta). This gene encodes for a protein that is highly similar to those isolated from other salmonids and shares all of the structural constraints seen in mammalian gonadotropins, including twelve conserved cysteines and a putative N-linked glycosylation site. The organization of the gene follows the conserved pattern regarding the numbers and positions of the introns, although the csFSHbeta gene contains a particularly large 6.
View Article and Find Full Text PDF