Publications by authors named "Kok Hong Lim"

The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes.

View Article and Find Full Text PDF

We recently reported the engineering of monomeric streptavidin, mSA, corresponding to one subunit of wild type (wt) streptavidin tetramer. The monomer was designed by homology modeling, in which the streptavidin and rhizavidin sequences were combined to engineer a high affinity binding pocket containing residues from a single subunit only. Although mSA is stable and binds biotin with nanomolar affinity, its fast off rate (koff ) creates practical challenges during applications.

View Article and Find Full Text PDF

The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit.

View Article and Find Full Text PDF

Yeast surface display allows heterologously expressed proteins to be targeted to the exterior of the cell wall and thus has a potential as a biotechnology platform. In this study, we report the successful display of functional streptavidin on the yeast surface. Streptavidin binds the small molecule biotin with high affinity (K(d) ≈ 10(-14)M) and is used widely in applications that require stable noncovalent interaction, including immobilization of biotinylated compounds on a solid surface.

View Article and Find Full Text PDF

Although streptavidin's high affinity for biotin has made it a widely used and studied binding protein and labeling tool, its tetrameric structure may interfere with some assays. A streptavidin mutant with a simpler quaternary structure would demonstrate a molecular-level understanding of its structural organization and lead to the development of a novel molecular reagent. However, modulating the tetrameric structure without disrupting biotin binding has been extremely difficult.

View Article and Find Full Text PDF

A genetic Fluorescence Resonance Energy Transfer (FRET) detector undergoes a post-translational modification (PTM)-induced conformational change that results in increased FRET. To test if the PTM-dependent FRET change can be quantified by flow cytometry, we purified and immobilized a genetic detector on microbeads and used flow cytometry to measure its FRET efficiency before and after Erk-2-mediated phosphorylation. The fluorescence ratio R between the acceptor and donor fluorescence, which was obtained by fitting a straight line through the data points in linear space, increases following phosphorylation, thus demonstrating that flow cytometry is capable of detecting a PTM-dependent FRET response.

View Article and Find Full Text PDF

Protein complexes are common in nature and play important roles in biology, but studying the quaternary structure formation in vitro is challenging since it involves lengthy and expensive biochemical steps. There are frequent technical difficulties as well with the sensitivity and resolution of the assays. In this regard, a technique that can analyze protein-protein interactions in high throughput would be a useful experimental tool.

View Article and Find Full Text PDF

Plant flavonoid polyphenols continue to find increasing pharmaceutical and nutraceutical applications; however their isolation, especially of pure compounds, from plant material remains an underlying challenge. In the past Escherichia coli, one of the most well-characterized microorganisms, has been utilized as a recombinant host for protein expression and heterologous biosynthesis of small molecules. However, in many cases the expressed protein activities and biosynthetic efficiency are greatly limited by the host cellular properties, such as precursor and cofactor availability and protein or product tolerance.

View Article and Find Full Text PDF

The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%.

View Article and Find Full Text PDF

Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain.

View Article and Find Full Text PDF

Flavones are plant secondary metabolites with potent pharmacological properties. We report the functional expression of FSI, a flavonoid 2-oxoglutarate-dependent dioxygenase-encoding flavone synthase from parsley in Escherichia coli. This expression allows the biosynthesis of various flavones from phenylpropanoid acids in recombinant E.

View Article and Find Full Text PDF