Publications by authors named "Koji Tsuchiya"

An effective approach to stabilize emulsions is to increase the rigidity of oil-water (O/W) interfacial films by adsorbing molecular assemblies such as lamellar phases around the emulsion particles. In this study, we aimed to analyze the structure of a lamellar phase adsorbed at an O/W interface and to clarify the effect of the structure and physicochemical properties of the lamellar phase on the dispersion stability of emulsions. The adsorption of the lamellar phase at the O/W interface of the emulsions was confirmed by freeze-fracture transmission electron microscopy of O/W emulsions prepared by diluting and dispersing gels formed with polyglycerol fatty acid esters, water, and cetyl isooctanoate (CIO).

View Article and Find Full Text PDF

The association between serum tumor necrosis factor receptor (TNFRs: TNFR1, TNFR2) levels and estimated glomerular filtration rate (eGFR) observed in patients with diabetes has not been comprehensively tested in healthy subjects with normal kidney function. It also remains unclear whether TNFR levels differ by age and sex, and between healthy subjects and diabetics. We measured serum TNFR levels in 413 healthy subjects and 292 patients with type 2 diabetes.

View Article and Find Full Text PDF

There has been a decreasing trend in new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and fatalities worldwide. The virus has been evolving, indicating the potential emergence of new variants and uncertainties. These challenges necessitate continued efforts in disease control and mitigation strategies.

View Article and Find Full Text PDF

Emulsification is an important technology in the field of cosmetics and household products. Emulsions are in non-equilibrium state; therefore, the products vary depending on the preparation process, and their state changes with time. Furthermore, it is known empirically that different types of oils have different emulsification properties (preparation and stability).

View Article and Find Full Text PDF

Photoresist stripping is the final step in the photolithography process that forms fine patterns for electronic devices. Recently, a mixture of ethylene carbonate (EC) and propylene carbonate (PC) has attracted attention as a new stripper based on its eco-friendliness and anti-corrosiveness. However, the EC/PC mixture causes re-adsorption of the photoresist during a process of subsequent water rinsing.

View Article and Find Full Text PDF

Introduction: This study evaluated the feasibility of the Sysmex XN-3000 automated hematology analyzer for the assessment of total nucleated cells (TNC) and bone marrow (BM) cell density in routine bone marrow aspiration (BMA) samples.

Methods: A total of 54 BMA samples from 39 hematological patients were evaluated. The number of megakaryocytes was calculated by a specific gating algorithm using the body fluid mode of the WBC differential (WDF) channel.

View Article and Find Full Text PDF

Background: Previous studies have shown that patients with immunosuppression tend to have longer-lasting SARS-CoV-2 infections and a number of mutations were observed during the infection period. However, these studies were, in general, conducted longitudinally. Mutation evolution among groups of patients with immunosuppression have not been well studied, especially among Asian populations.

View Article and Find Full Text PDF

This study aimed to evaluate the membrane structure of distearoylphosphatidylcholine (DSPC) liposomes dispersed in water containing various types of polyols with low molecular weight such as glycerin (Gly), 1,3-butandiol (BG), and propylene glycol (PG). To clarify the detailed membrane structure, generalized indirect Fourier transformation (GIFT) analysis, which provides information about the bilayer spacing, bilayer thickness, number of lamellar layers, and membrane flexibility, was applied to small-angle X-ray scattering (SAXS) data of the present system. The GIFT results showed that the bilayer thickness of the DSPC liposomes followed the order Gly>>BG>PG.

View Article and Find Full Text PDF

Many variants of SARS-CoV-2 have emerged around the world. It is therefore important to understand its global viral evolution and the corresponding mutations associated with transmissibility and severity. In this study, we analyzed 112 whole genome sequences of SARS-CoV-2 collected from patients at Juntendo University Hospital in Tokyo and the genome data from entire Japan deposited in Global Initiative on Sharing Avian Influenza Data (GISAID) to examine the relationship of amino acid changes with the transmissibility and the severity of each strain/lineage.

View Article and Find Full Text PDF

Background: Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using saliva samples has emerged as a preferred technique since sample collection is easy and noninvasive. In addition, several commercial high-throughput PCR kits that do not require RNA extraction/purification have been developed and are now available for testing saliva samples. However, an optimal protocol for SARS-CoV-2 RT-PCR testing of saliva samples using the RNA extraction/purification-free kits has not yet been established.

View Article and Find Full Text PDF

Oil-in-water (O/W) emulsions containing ethanol have been used in food, cosmetics, paints, and other applications. However, O/W emulsions with long-term stability are difficult to produce at high ethanol concentrations because the adsorption of the emulsifier at the O/W interface is restricted by ethanol. In this study, to resolve this issue, we prepared ethanol-containing O/W emulsions with high dispersion stability using a series of polyglycerol monofatty acid esters (PGFEs) with different fatty acid chain lengths, which are bio-safe nonionic surfactants, as emulsifiers.

View Article and Find Full Text PDF

We report on the design and synthesis of triptycene-peptide hybrids (TPHs), , -, and -, which are conjugates of a triptycene core unit with two or three cationic KKKGG peptides (K: lysine and G: glycine) through a C alkyl chain. It was discovered that - and - induce paraptosis, a type of programmed cell death (PCD), in Jurkat cells (leukemia T-lymphocytes). Mechanistic studies indicate that these TPHs induce the transfer of Ca from the endoplasmic reticulum (ER) to mitochondria, a loss of mitochondrial membrane potential (ΔΨ), tethering of the ER and mitochondria, and cytoplasmic vacuolization in the paraptosis processes.

View Article and Find Full Text PDF

We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na)/Ca exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by . The findings allow us to suggest that the induction of paraptosis by and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential ().

View Article and Find Full Text PDF

In our previous paper, we reported that amphiphilic Ir complex-peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission.

View Article and Find Full Text PDF

We report on the design and synthesis of a green-emitting iridium complex-peptide hybrid (IPH) , which has an electron-donating hydroxyacetic acid (glycolic acid) moiety between the Ir core and the peptide part. It was found that is selectively cytotoxic against cancer cells, and the dead cells showed a green emission. Mechanistic studies of cell death indicate that induces a paraptosis-like cell death through the increase in mitochondrial Ca concentrations via direct Ca transfer from ER to mitochondria, the loss of mitochondrial membrane potential (ΔΨ), and the vacuolization of cytoplasm and intracellular organelle.

View Article and Find Full Text PDF

We studied the phase behavior of a ternary polymerizable gemini surfactant (PC11-6-11)/1-undecanol/water system and stabilized these liquid crystalline structures through the polymerization of surfactants. The addition of 1-undecanol to a PC11-6-11/water system formed bicontinuous cubic (V) and reversed hexagonal (H) liquid crystal phases in addition to hexagonal (H) and lamellar (L) phases, which were also formed using the binary system of PC11-6-11/water. These new phases were formed because the fatty alcohol penetrated the palisade layer of the PC11-6-11 micelles.

View Article and Find Full Text PDF

Interaction between negatively charged liposomes and cationic polyamidoamine dendrimers of different generations was investigated through size, zeta potential, turbidity, electron microscopy, atomic force microscopy, fluorescence spectroscopy, and calorimetric studies. Liposomes with the binary combination of 1,2-dipalmitoyl--glycero-3-phosphatidylcholine (DPPC) + dihexadecyl phosphate, DPPC + 1,2-dimyristoyl--glycero-3-phosphoglycerol, DPPC + 1,2-dipalmitoyl--glycero-3-phosphate, and DPPC + 1,2-dipalmitoyl--glycero-3-phosphoethanol were stable up to 60 days. The electrostatic nature of dendrimer-lipid bilayer interaction was evidenced through charge neutralization and subsequent reversal upon added dendrimer to liposome.

View Article and Find Full Text PDF

We developed a high-power abiotic direct glucose fuel cell system using a Au-Pt bimetallic anode catalyst. The high power generation (95.7 mW cm) was attained by optimizing operating conditions such as the composition of a bimetallic anode catalyst, loading amount of the metal catalyst on a carbon support, ionomer/carbon weight ratio when the catalyst was applied to the anode, glucose and KOH concentrations in the fuel solution, and operating temperature and flow rate of the fuel solution.

View Article and Find Full Text PDF

This report focuses on acceleration of the recombination of lophyl radicals with a lophine dimer derivative by forming molecular assemblies. A newly synthesized cationic amphiphilic lophine dimer formed molecular assemblies with a diameter of ~220 nm in an aqueous medium. When the molecular assemblies were formed, the rate of recombination of lophyl radicals, produced by ultraviolet light irradiation, was accelerated 50,000-fold compared to that in an organic solvent.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 fusion protein, encoded by the Philadelphia chromosome, have drastically improved the outcomes for patients with chronic myeloid leukemia (CML). Although several real-time quantitative polymerase chain reaction (RQ-PCR) kits for the detection of BCR-ABL1 transcripts are commercially available, their accuracy and efficiency in laboratory practice require reevaluation. We have developed a new in-house RQ-PCR method to detect minimal residual disease (MRD) in CML cases.

View Article and Find Full Text PDF

The detection and quantification of leukemia-associated fusion gene transcripts play important roles in the diagnosis and follow-up of leukemias. To establish a standardized method without interlaboratory discrepancies, we developed a novel one-step reverse transcription quantitative PCR (RT-qPCR) assay, called "the Eprobe leukemia assay," for major and minor BCR-ABL1, RUNX1-RUNX1T1, and various isoforms of PML-RARA. This assay is comprised of Eprobes that are exciton-controlled hybridization-sensitive fluorescent oligonucleotides.

View Article and Find Full Text PDF

Physicochemical studies on aqueous mixtures of ionic liquids (ILs) and reverse pluronics are limited. Self-aggregation dynamics and microstructure of a surface-active IL (SAIL), 1-butyl-3-methylimidazolium octylsulfate [Cmim] [COSO], in the presence of a reverse pluronic, POEOPO (known as 10R5), were studied using isothermal titration calorimetry (ITC), high-resolution nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) methods. Also, cryo-/freeze-fracture transmission electron microscopy was employed to determine the microstructures of SAIL/10R5 mixtures.

View Article and Find Full Text PDF

The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed.

View Article and Find Full Text PDF