Publications by authors named "Koji Toma"

Acetone gas in exhaled breath and skin gas is produced when fatty acids are used as an energy source in the body. The selective and sensitive continuous measurement of acetone gas would be useful for the early screening of diabetes mellitus, a condition characterized by increased fatty acid metabolism. In particular, there is a growing need for acetone gas sensors that enable the wearable measurement of trace concentrations of acetone gas emitted through the skin.

View Article and Find Full Text PDF

Highly sensitive and selective imaging of human-borne volatile organic compounds (VOCs) enables an intuitive understanding of their concentrations and release sites. While multi-VOC imaging methods have the potential to facilitate step-by-step metabolic tracking and improve disease screening accuracy, no such system currently exists. In this study, we achieved simultaneous imaging of ethanol (EtOH) and acetaldehyde (AcH), the starting molecule and an intermediate metabolite of alcohol metabolism, using a multiwavelength VOC imaging system.

View Article and Find Full Text PDF

Human-borne acetone is a potent marker of lipid metabolism. Here, an enzyme immobilization method for secondary alcohol dehydrogenase (S-ADH), which is suitable for highly sensitive and selective biosensing of acetone, was developed, and then its applicability was demonstrated for spatiotemporal imaging of concentration distribution. After various investigations, S-ADH-immobilized meshes could be prepared with less than 5% variation by cross-linking S-ADH with glutaraldehyde on a cotton mesh at 40 °C for 15 min.

View Article and Find Full Text PDF

Fruits can emit ethanol, which is generated through fermentation during hypoxic storage. We imaged spatiotemporal changes in the gaseous ethanol emitted by "La France" pear its epicarp. The gas-imaging system utilized enzymes to transduce the ethanol concentration into fluorescence intensity.

View Article and Find Full Text PDF

This study investigated the suitability of surface modification for a long-range surface plasmon (LRSP) aptasensor using two different hydrogels, aiming at real-time monitoring of vancomycin (VCM) in undiluted serum and blood. Three different layer structures were formed on a gold surface of LRSP sensor chip using poly[2-methacryloyloxyethyl phosphorylcholine (MPC)---methacryloyl-(L)-tyrosinemethylester (MAT)] (PMM) and poly[MPC--2-ethylhexyl methacrylate (EHMA)--MAT] (PMEM). The peptide aptamer for VCM was immobilized in PMM and PMEM via MAT.

View Article and Find Full Text PDF

Salivary turbidity is a promising indicator for evaluating oral hygiene. This study proposed a wearable mouthguard-type sensor for continuous and unconstrained measurement of salivary turbidity. The sensor evaluated turbidity by measuring the light transmittance of saliva with an LED and a phototransistor sealed inside a double-layered mouthguard.

View Article and Find Full Text PDF

The molecule 2-nonenal is renowned as the origin of unpleasant human aging-related body odor that can potentially indicate age-related metabolic changes. Most 2-nonenal measurements rely on chromatographic analytical systems, which pose challenges in terms of daily usage and the ability to track changes in concentration over time. In this study, we have developed liquid- and gas-phase biosensors (bio-sniffers) with the aim of enabling facile and continuous measurement of -2-nonenal vapor.

View Article and Find Full Text PDF

In orthodontics, understanding the pressure of oral soft tissues on teeth is important to elucidate the cause and establish treatment methods. We developed a small wireless mouthguard (MG)-type device that continuously and unrestrainedly measures pressure, which had previously been unachieved, and evaluated its feasibility in human subjects. First, the optimal device components were considered.

View Article and Find Full Text PDF

Vancomycin (VCM) causes poisoning symptoms at high concentrations; thus, therapeutic drug monitoring is recommended to measure and control blood levels regularly. However, blood analysis at regular intervals does not allow knowing the detailed temporal change in concentration. To address this challenge, we developed a long-range surface plasmon (LRSP) aptasensor for measuring VCM label-free and real-time by combining a sensitive LRSP sensor and a peptide aptamer with a VCM recognition site.

View Article and Find Full Text PDF
Article Synopsis
  • Non-invasive measurement of volatile organic compounds (VOCs) from living organisms can help diagnose health conditions in humans.
  • Bio-based gas sensors have been developed to accurately detect specific VOCs but traditional methods face challenges due to wet probes that hinder commercialization.
  • The study introduces a novel dry-form enzyme-based fluorometric electrospun fiber sensor (eFES) that effectively detects ethanol, maintaining enzyme activity without pretreatment, which enhances its potential for practical use.
View Article and Find Full Text PDF

Methanol (MeOH) in exhaled breath has potential for non-invasive assessment of intestinal flora. In this study, we have developed a biochemical gas sensor (bio-sniffer) for MeOH in the gas phase using fluorometry and a cascade reaction with two enzymes, alcohol oxidase (AOD) and formaldehyde dehydrogenase (FALDH). In the cascade reaction, oxidation of MeOH was initially catalyzed by AOD to produce formaldehyde, and then this formaldehyde was successively oxidized via FALDH catalysis together with reduction of oxidized form of β-nicotinamide adenine dinucleotide (NAD).

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) released through skin (transcutaneous gas) has been increasing in importance for the continuous and real-time assessment of diseases or metabolisms. For stable monitoring of transcutaneous gas, finding a body part with little interference on the measurement is essential. In this study, we have investigated the possibility of external ears for stable and real-time measurement of ethanol vapour by developing a monitoring system that consisted with an over-ear gas collection cell and a biochemical gas sensor (bio-sniffer).

View Article and Find Full Text PDF

For understanding the status of intestinal flora non-invasively, methanol (MeOH) has been attracting the attention. In this study, we have developed and compared two different liquid-phase methanol biosensors. One, referred to as the AOD electrosensor, utilized alcohol oxidase (AOD) and an oxygen electrode.

View Article and Find Full Text PDF

Our groups have previously developed a biochemical gas sensor to measure isopropanol (IPA) in exhaled air and have applied it for breath IPA investigation in healthy subjects and diabetes patients. In this study, the original bio-sniffer was modified with a series of components that improved the limit of detection (LOD). First, the modified IPA bio-sniffer used a C8855-type photomultiplier tube (PMT) that performed well in the photon sensitivity at the peak wavelength of nicotinamide adenine dinucleotide (NADH) fluorescence.

View Article and Find Full Text PDF

In this study, a cellulose acetate (CA) membrane is formed as an interference rejection membrane on a glucose sensor to measure glucose in saliva. Glucose in saliva is successfully measured in vivo without any pretreatment of human saliva. A mouthguard (MG) glucose sensor is developed to monitor salivary glucose, which is reported to be correlated with the blood glucose level.

View Article and Find Full Text PDF

We developed a biochemical gas sensor (bio-sniffer) using the enzymatic reaction of alcohol dehydrogenase (ADH) to target ethanol in skin gas. By introducing a gas concentrator using liquid nitrogen, we constructed a highly sensitive system for skin gas measurements. The ethanol bio-sniffer was built from an optical-fiber probe employing an ADH enzyme membrane, an UV-LED light source for excitation, and a photomultiplier tube.

View Article and Find Full Text PDF

Skin gas that contains volatile metabolites (volatilome) is emanated continuously and is thus expected to be suitable for non-invasive monitoring. The aim of this study was to investigate the relationship between the regional difference of sweat rate and skin volatilome distribution to identify the suitable site to monitor metabolisms. In this study, we developed a biofluorometric gas-imaging system (sniff-cam) based on nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) to visualize transcutaneous ethanol (EtOH) distribution.

View Article and Find Full Text PDF

A skin-gas cam that allows continuous imaging of transcutaneous blood volatile organic compounds (VOCs) emanated from human skin was developed. The skin-gas cam is able to reveal the relationship between the local skin conditions and transcutaneous blood VOCs in the field of volatile metabolomics (volatolomics). A ring-type ultraviolet (UV) light-emitting diode was mounted around a camera lens as an excitation light source, which enabled the simultaneous excitation and imaging of fluorescence.

View Article and Find Full Text PDF

We developed a gas-imaging system (sniff-cam) for gaseous ethanol (EtOH) with improved sensitivity. The sniff-cam was applied to measure the extremely low concentration distribution of breath EtOH without the consumption of alcohol, which is related to the activity of the oral or gut bacterial flora. A ring-type ultraviolet-light-emitting diode was mounted around a camera lens as an excitation light source, which enabled simultaneous excitation and imaging of the fluorescence.

View Article and Find Full Text PDF

The possibility of dithiobis(succinimidyl propionate) (DSP) for repeated immunoassay with a surface acoustic wave (SAW) immunosensor was explored. In the sensor, DSP was used to modify a gold-coated quartz sensing area of a SAW device by forming a self-assembled monolayer on the gold surface. In a model sandwich assay using mouse (mIgG) and anti-mouse (a-mIgG) antibodies, the primary antibody, mIgG, firstly reacted with N-hydroxysuccinimide ester groups of DSP and was immobilized on the SAW device to fabricate the SAW immunosensor.

View Article and Find Full Text PDF

Measuring the volatile organic compounds (VOCs) released from a human is a promising method for noninvasive disease screening and metabolism assessment. Selectively imaging multiple VOCs derived from human breath and skin gas is expected to improve current gas analysis techniques. In this study, a gas-imaging system (sniff-cam) that can be used to simultaneously image the concentration distribution of multiple VOCs, namely, ethanol (EtOH) and acetaldehyde (AcH), was developed.

View Article and Find Full Text PDF

Performance of a glucose-driven bio-battery was improved by enhancing electrode characteristics and oxygen supply efficiency to a cathode. The bio-battery generates electric power from glucose through three enzymatic reactions using glucose dehydrogenase, diaphorase and bilirubin oxidase. A flexible and thin Pt electrode was employed instead of a glassy carbon (GC) electrode on which enzymes, a coenzyme, and mediators were immobilized by layer-by-layer method.

View Article and Find Full Text PDF

In this study, a highly sensitive and selective biochemical gas sensor (bio-sniffer) and real-time monitoring system with skin gas cell was constructed for the determination of ethanol gas concentration on human skin. This bio-sniffer measured the concentration of ethanol according to the change in fluorescence intensity of nicotinamide adenine dinucleotide (NADH), which is produced in an enzymatic reaction by alcohol dehydrogenase (ADH). The NADH detection system used an ultraviolet light emitting diode (UV-LED) as the excitation light, and a highly sensitive photomultiplier tube as a fluorescence intensity detector.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) exhaled in breath have huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath samples can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed.

View Article and Find Full Text PDF

Understanding concentration distributions, release sites, and release dynamics of volatile organic compounds (VOCs) from the human is expected to lead to methods for noninvasive disease screening and assessment of metabolisms. In this study, we developed a visualization system (sniff-cam) that enabled one to identify a spatiotemporal change of gaseous acetaldehyde (AcH) in real-time. AcH sniff-cam was composed of a camera, a UV-LED array sheet, and an alcohol dehydrogenase (ADH)-immobilized mesh.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontnulnlj6bbopdhdhk9u9iv2hgdnj8sav): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once