To improve the pentose fermentation rate in Flammulina velutipes, the putative xylose isomerase (XI) gene from Arabidopsis thaliana was cloned and introduced into F. velutipes and the gene expression was evaluated in transformants. mRNA expression of the putative XI gene and XI activity were observed in two transformants, indicating that the putative gene from A.
View Article and Find Full Text PDFEthanol production by Flammulina velutipes from high substrate concentrations was evaluated. F. velutipes produces approximately 40-60 g l(-1) ethanol from 15% (w/v) D-glucose, D-fructose, D-mannose, sucrose, maltose, and cellobiose, with the highest conversion rate of 83% observed using cellobiose as a carbon source.
View Article and Find Full Text PDFTo improve the expression level of heterologous genes in Flammulina velutipes Fv-1, we constructed new vectors having glyceraldehydes-3-phosphate dehydrogenase (gpd) gene promoter to control the expression of target genes. When the hygromycin B phosphotransferase (hph) gene from Escherichia coli was controlled by the gpd promoter, transformation efficiency was 3-fold higher than the case of that controlled by the tryptophan synthetase gene (trp1) promoter.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2010
To develop a gene transformation method for Flammulina velutipes, we constructed a vector with hph gene under control of the trp1 gene promoter. The vector was integrated into protoplast derived from mycelia by the calcium-polyethylene glycol method, as it has not been reported for F. velutipes.
View Article and Find Full Text PDFBasidiomycetes have the ability to degrade lignocellulosic biomass, and some basidiomycetes produce alcohol dehydrogenase. These characteristics may be useful in the direct production of ethanol from lignocellulose. Ethanol fermentation by basidiomycetes was investigated to examine the possibility of ethanol production by consolidated bioprocessing (CBP) using Flammulina velutipes.
View Article and Find Full Text PDFThe possibility of using two kinds of sorghum as raw materials in consolidated bioprocessing bioethanol production using Flammulina velutipes was investigated. Enzymatic saccharification of sweet sorghum was not as high as in brown mid-rib (bmr) mutated sorghum, but the amount of ethanol production was higher. Ethanol production from bmr mutated sorghum significantly increased when saccharification enzymes were added to the culture.
View Article and Find Full Text PDF