Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants.
View Article and Find Full Text PDFLarge-scale phenotyping of multicellular organisms is one of the current challenges in biology. We present a comprehensive and scalable pipeline that allows for the efficient phenotyping of root growth traits on a large scale. This includes a high-resolution, low-cost acquisition setup as well as the automated image processing software BRAT.
View Article and Find Full Text PDFChloroplasts have a critical role in plant immunity as a site for the production for salicylic acid and jasmonic acid, important mediators of plant immunity. However, the molecular link between chloroplasts and the cytoplasmic-nuclear immune system remains largely unknown. Here we show that pathogen-associated molecular pattern (PAMP) signals are quickly relayed to chloroplasts and evoke specific Ca(2+) signatures in the stroma.
View Article and Find Full Text PDF