Publications by authors named "Koji Mizuhashi"

The resting zone of the postnatal growth plate is organized by slow-cycling chondrocytes expressing parathyroid hormone-related protein (PTHrP), which include a subgroup of skeletal stem cells that contribute to the formation of columnar chondrocytes. The PTHrP-Indian hedgehog feedback regulation is essential for sustaining growth plate activities; however, molecular mechanisms regulating cell fates of PTHrP+ resting chondrocytes and their eventual transformation into osteoblasts remain largely undefined. Here, in a mouse model, we specifically activated Hedgehog signaling in PTHrP+ resting chondrocytes and traced the fate of their descendants using a tamoxifen-inducible Pthrp-creER line with patched-1-floxed and tdTomato reporter alleles.

View Article and Find Full Text PDF

The resting zone of the postnatal growth plate is organized by slow-cycling chondrocytes expressing parathyroid hormone-related protein (PTHrP), which include a subgroup of skeletal stem cells that contribute to the formation of columnar chondrocytes. The PTHrP-indian hedgehog (Ihh) feedback regulation is essential for sustaining growth plate activities; however, molecular mechanisms regulating cell fates of PTHrP resting chondrocytes and their eventual transformation into osteoblasts remain largely undefined. Here, in a mouse model, we utilized a tamoxifen-inducible line with ( ) floxed and tdTomato reporter alleles to specifically activate Hedgehog signaling in PTHrP resting chondrocytes and trace the fate of their descendants.

View Article and Find Full Text PDF

Chondrocytes in the resting zone of the postnatal growth plate are characterized by slow cell cycle progression, and encompass a population of parathyroid hormone-related protein (PTHrP)-expressing skeletal stem cells that contribute to the formation of columnar chondrocytes. However, how these chondrocytes are maintained in the resting zone remains undefined. We undertook a genetic pulse-chase approach to isolate slow cycling, label-retaining chondrocytes (LRCs) using a chondrocyte-specific doxycycline-controllable Tet-Off system regulating expression of histone 2B-linked GFP.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) are versatile mesenchymal cell populations underpinning the major functions of the skeleton, a majority of which adjoin sinusoidal blood vessels and express C-X-C motif chemokine ligand 12 (CXCL12). However, how these cells are activated during regeneration and facilitate osteogenesis remains largely unknown. Cell-lineage analysis using Cxcl12-creER mice reveals that quiescent Cxcl12-creER perisinusoidal BMSCs differentiate into cortical bone osteoblasts solely during regeneration.

View Article and Find Full Text PDF

The growth plate provides a substantial source of mesenchymal cells in the endosteal marrow space during endochondral ossification. The current model postulates that a group of chondrocytes in the hypertrophic zone can escape from apoptosis and transform into cells that eventually become osteoblasts in an area beneath the growth plate. The growth plate is composed of cells with various morphologies; particularly at the periphery of the growth plate immediately adjacent to the perichondrium are "borderline" chondrocytes, which align perpendicularly to other chondrocytes.

View Article and Find Full Text PDF

Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root-bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown.

View Article and Find Full Text PDF

Skeletal stem cells regulate bone growth and homeostasis by generating diverse cell types, including chondrocytes, osteoblasts and marrow stromal cells. The emerging concept postulates that there exists a distinct type of skeletal stem cell that is closely associated with the growth plate, which is a type of cartilaginous tissue that has critical roles in bone elongation. The resting zone maintains the growth plate by expressing parathyroid hormone-related protein (PTHrP), which interacts with Indian hedgehog (Ihh) that is released from the hypertrophic zone, and provides a source of other chondrocytes.

View Article and Find Full Text PDF

Background: Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.

View Article and Find Full Text PDF

Mutations of Filamin genes, which encode actin-binding proteins, cause a wide range of congenital developmental malformations in humans, mainly skeletal abnormalities. However, the molecular mechanisms underlying Filamin functions in skeletal system formation remain elusive. In our screen to identify skeletal development molecules, we found that Cfm (Fam101) genes, Cfm1 (Fam101b) and Cfm2 (Fam101a), are predominantly co-expressed in developing cartilage and intervertebral discs (IVDs).

View Article and Find Full Text PDF

In vertebrate bone formation, the functional mechanisms of transcription factors in osteoblastic differentiation have been relatively well elucidated; however, the exact roles of cell-extrinsic molecules are less clear. We previously identified human and mouse Obif, an osteoblast induction factor, also known as Tmem119, which encodes a single transmembrane protein. OBIF is predominantly expressed in osteoblasts in mouse.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoblasts are key cells in bone formation, derived from common precursors along with chondrocytes, and their differentiation is influenced by various intrinsic and extrinsic signals.
  • A newly identified gene called obif encodes a protein that is mainly expressed in osteoblasts and is crucial during the developmental stages of endochondral ossification in mice.
  • Obif promotes osteoblastic differentiation when overexpressed and inhibits it when knocked down, suggesting its role as a signaling molecule in osteoblast development.
View Article and Find Full Text PDF