We report on the anisotropic photodetachment of positronium negative ions, followed by the dissociation into p-wave electrons and positronium atoms, with a linearly polarized laser beam. We have observed a strong recoil effect of the photoelectrons on the translation momentum of the dissociated positronium atoms. With polarization angle-resolved measurements, the asymmetry parameter of the photoemission angular distribution of the ions at a photon energy of 1.
View Article and Find Full Text PDFWe propose tabular two-dimensional correlation spectroscopy analysis for extracting features from multifaceted characterization data, essential for understanding material properties. This method visualizes similarities and phase lags in structural parameter changes through heatmaps, combining hierarchical clustering and asynchronous correlations. We applied the proposed method to data sets of carbon nanotube (CNT) films annealed at various temperatures and revealed the complexity of their hierarchical structures, which include elements such as voids, bundles, and amorphous carbon.
View Article and Find Full Text PDFAtomic oxygen (AO) is one of the dominant components of the residual atmosphere in low Earth orbit. AO collides with spacecraft with a translational energy of 5 eV, forming nanoscale protrusions on polymeric materials. To clarify the influences of a polymer's chemical structure on the formation of AO-induced microstructures, this study investigated the size of free-volume holes and the layer thickness that interacted with AO for polyethylene (PE), polypropylene (PP), and polystyrene (PS) by positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFThreshold photodetachment spectroscopy of the positronium negative ion has been accomplished for the first time employing an efficient source of the ions and photodetachment techniques combined with a tunable optical parametric oscillator and amplifier laser. The photodetachment threshold, corresponding to the electron affinity of positronium (1^{3}S_{1}), was determined to be 326.88±0.
View Article and Find Full Text PDFWhen an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps(-) (e(-)e(+)e(-)). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics.
View Article and Find Full Text PDF