Publications by authors named "Koji Kasai"

Feeding laying hens with black soldier fly larval (BSFL) meal improves their performance. However, the beneficial mechanism of BSFL meals in improving the performance of laying hens remains unclear. This study investigated the effects of the BSFL diet on liver metabolism, gut physiology, and gut microbiota in laying hens.

View Article and Find Full Text PDF

Marine teleosts ingest large amounts of seawater containing various ions, including 0.4 mM boric acid, which can accumulate at toxic levels in the body. However, the molecular mechanisms by which marine teleosts absorb and excrete boric acid are not well understood.

View Article and Find Full Text PDF

Boric acid is a vital micronutrient in animals; however, excess amounts are toxic to them. Little is known about whole-body boric acid homeostasis in animals. Seawater (SW) contains 0.

View Article and Find Full Text PDF

The use of insects in animal feed appears to be an efficient approach that contributes to solving the environmental issues related to leftover disposal; however, it has not been approved in some countries due to concerns about pathogenic infections. This study aimed to evaluate the feasibility of long-term substitution of fish meal in poultry feed with organic defatted black soldier fly larvae (BSFL) meal prepared from BSFL raised on leftovers. The 87 Julia laying hens (178-day-old) were allotted in a completely randomized design with three treatments (29 layers in each treatment).

View Article and Find Full Text PDF

Elution of Ni ions from medical devices induces inflammation and toxicity. We previously reported that elution of Ni ions from Ni wires induced COX-2 expression and increased lactate production, but whether lactate is involved in the further elution of Ni ions remains unclear. In this study, using KMST-6, a human fibroblast cell line, we examined the molecular mechanisms by which Ni ions increase lactate release and the role of lactate in enhancing the elution of Ni ions.

View Article and Find Full Text PDF

Under high boron (B) conditions, nodulin 26-like intrinsic protein 5;1 (NIP5;1) mRNA, a boric acid channel, is destabilized to avoid excess B entry into roots of Arabidopsis thaliana. In this regulation, the minimum upstream open reading frame (uORF), AUGUAA, in its 5'-untranslated region (5'-UTR) is essential, and high B enhances ribosome stalling at AUGUAA and leads to suppression of translation and mRNA degradation. This B-dependent AUGUAA-mediated regulation occurs also in animal transient expression and reticulocyte lysate translation systems.

View Article and Find Full Text PDF

Black soldier fly (BSF) larvae and pre-pupae could be satisfactorily raised on household organic waste and used as poultry feed, offering a potential sustainable way to recycle untapped resources of waste. The present study was conducted to determine if whole (non-defatted) BSF larvae and pre-pupae raised on experimental household waste could substitute soybean meal and oil as ingredients for laying hen diets. While no significant differences in feed intake and the egg-laying rate of hens were observed throughout the experiment, egg weight and eggshell thickness were greater in the pre-pupae-fed group than in the other groups.

View Article and Find Full Text PDF

Both plants and animals must contend with changes in their environment. The ability to respond appropriately to these changes often underlies the ability of the individual to survive. In plants, an early response to environmental stress is an alteration in plasmodesmatal permeability with accompanying changes in cell to cell signaling.

View Article and Find Full Text PDF

Boron (B) is an essential element for plants; however, as high B concentrations are toxic, B transport must be tightly regulated. BOR1 is a borate exporter in Arabidopsis () that facilitates B translocation into shoots under B deficiency conditions. When the B supply is sufficient, expression is down-regulated by selective degradation of BOR1 protein, while additional regulatory mechanisms are proposed to exist.

View Article and Find Full Text PDF

Nickel ions (Ni) eluted from biomedical devices cause inflammation and Ni allergy. Although Ni and Co elicit common effects, Ni induces a generally stronger inflammatory reaction. However, the molecular mechanism by which Ni and Co induce such different responses remains to be elucidated.

View Article and Find Full Text PDF

We examined the effects of encapsulated lactic acid bacteria administrated orally to lactating cattle on the intestinal flora. A dose of 3 X 10¹¹ colony forming unit (cfu) of freeze-dried Lactobacillus coryniformis subsp. torquens (JCM1099) encapsulated in an enteric capsule capable of bypassing the rumen was administered for seven days.

View Article and Find Full Text PDF

A new rumen escapable tool is presented for cattle in prospect of developing medical treatment or supplementing trace elements for disease prevention. This tool consists of a three-layered capsule that dissolves in the lower digestive tract, but not in the rumen. The capsule was manufactured by capsule-forming techniques through the use of liquid surface tension.

View Article and Find Full Text PDF

We used plastic balls to investigate how their specific gravity and diameter affect excretion rate and rumination in dairy cattle, to develop a capsule that can be used for reaching the lower gastrointestinal tract without physical breakdown and/or degradation in the rumen. Twelve types of indigestible plastic balls composed of a combination of four specific gravities (0.95, 1.

View Article and Find Full Text PDF

Endocytosis and membrane trafficking are the major factors controlling the abundance of plasma membrane proteins, such as transporters and receptors. We have found that Arabidopsis borate transporter BOR1 is polarly localized to the inner (stele-facing) plasma membrane domain of various root cells under boron limitation, and when boron is supplied in excess, BOR1 is rapidly transferred to the vacuole for immediate degradation. The BOR1 polarity and degradation are controlled by membrane trafficking including endocytosis.

View Article and Find Full Text PDF

After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City.

View Article and Find Full Text PDF

Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4.

View Article and Find Full Text PDF

Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation.

View Article and Find Full Text PDF

Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L. Despite that, it is unclear how B is mobilized and accumulated in reproductive tissues.

View Article and Find Full Text PDF

Accumulation of cadmium (Cd) in rice (Oryza sativa L.) grains poses a potential health problem, especially in Asia. Most Cd in rice grains accumulates through phloem transport, but the molecular mechanism of this transport has not been revealed.

View Article and Find Full Text PDF

Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport. Here, we show that boron-induced ubiquitination is required for vacuolar sorting of BOR1.

View Article and Find Full Text PDF

Boron (B) is essential for plant growth but is toxic when present in excess. In the roots of Arabidopsis thaliana under B limitation, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, are required for efficient B uptake and subsequent translocation into the xylem, respectively. However, under high-B conditions, BOR1 activity is repressed through endocytic degradation, presumably to avoid B toxicity.

View Article and Find Full Text PDF

Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp.

View Article and Find Full Text PDF

Bacterial alarmone (p)ppGpp, is a global regulator responsible for the stringent control. Two homologous (p)ppGpp synthetases, RelA and SpoT, have been identified and characterized in Escherichia coli, whereas Gram-positive bacteria such as Bacillus subtilis have been thought to possess only a single RelA-SpoT enzyme. We have now identified two genes, yjbM and ywaC, in B.

View Article and Find Full Text PDF

The genetic system of chloroplasts, including the machinery for transcription, translation, and DNA replication, exhibits substantial similarity to that of eubacteria. Chloroplasts are also thought to possess a system for generating guanosine 5'-triphosphate ((p)ppGpp), which triggers the stringent response in eubacteria, with genes encoding chloroplastic (p)ppGpp synthetase having been identified. We now describe the identification and characterization of genes (OsCRSH1, OsCRSH2, and OsCRSH3) for a novel type of (p)ppGpp synthetase in rice.

View Article and Find Full Text PDF

Oxidative stress inhibits the repair of photodamaged photosystem II (PSII). This inhibition is due initially to the suppression, by reactive oxygen species (ROS), of the synthesis de novo of proteins that are required for the repair of PSII, such as the D1 protein, at the level of translational elongation. To investigate in vitro the mechanisms whereby ROS inhibit translational elongation, we developed a translation system in vitro from the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF