Publications by authors named "Koji Kakehi"

In this study, tensile and creep deformation of a high-entropy alloy processed by selective laser melting (SLM) has been investigated; hot ductility drop was identified at first, and the loss of ductility at elevated temperature was associated with intergranular fracture. By modifying the grain boundary morphology from straight to serration, the hot ductility drop issue has been resolved successfully. The serrated grain boundary could be achieved by reducing the cooling rate of solution heat treatment, which allowed the coarsening of L1 structured γ' precipitates to interfere with mobile grain boundaries, resulting in undulation of the grain boundary morphology.

View Article and Find Full Text PDF

We studied the effects of the rare earth element yttrium (Y) on the hot cracking and creep properties of Hastelloy-X processed by selective laser melting. We used two different alloys to study hot cracking in Hastelloy-X: one with 0.12 mass% yttrium added and one with no yttrium.

View Article and Find Full Text PDF

A hierarchical microstructure strengthened high entropy superalloy (HESA) with superior cost specific yield strength from room temperature up to 1,023 K is presented. By phase transformation pathway through metastability, HESA possesses a hierarchical microstructure containing a dispersion of nano size disordered FCC particles inside ordered L1 precipitates that are within the FCC matrix. The average tensile yield strength of HESA from room temperature to 1,023 K could be 120 MPa higher than that of advanced single crystal superalloy, while HESA could still exhibit an elongation greater than 20%.

View Article and Find Full Text PDF

The selective laser melting (SLM) process was used to fabricate an Alloy718 specimen. The microstructure and creep properties were characterized in both the as-built and post-processed SLM materials. Post-processing involved several heat treatments and a combination of hot isostatic pressing (HIP) and solution treatment and aging (STA) to homogenize the microstructure.

View Article and Find Full Text PDF

This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys.

View Article and Find Full Text PDF