Thin BaTiO₃ (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating.
View Article and Find Full Text PDFNano-sized tetragonal BaTiO₃ (BT) particles that are well dispersed in solution are essential for the dielectric layer in multilayer ceramic capacitor technology. A hydrothermal process using TiCl₄ and BaCl₂, as source of Ti and Ba, respectively, or the precursor TiO₂ as seed for the formation of BT, and poly(vinylpyrrolidone) (PVP) as a surfactant, was employed in this study to enhance both the dispersibility and tetragonality (c/a) simultaneously in a single reaction process. The process parameters, i.
View Article and Find Full Text PDFWe report on the design and fabrication of a four-component supramolecular network using the 'core-shell' approach. Each 'core' component templates the formation of an outer 'shell' leading to formation of three concentric 'shells' around the central guest. The 'shells' are formed only in presence of guests thus demonstrating remarkable selectivity in molecular recognition.
View Article and Find Full Text PDFMultifunctional π-expanded macrocyclic oligothiophene 6-mer 1, as well as 9- (2) and 12-mers (3), was synthesized using a McMurry coupling reaction as the key step. The 6-mer 1 was converted to cyclo[6](2,5-thienylene-ethynylene) (4) by using a bromination-dehydrobromination procedure. From X-ray analysis, the crystal structures of nonplanar 1 and round-shaped 2 and 4 were elucidated.
View Article and Find Full Text PDFThrough the precise molecular design for alkoxy dehydro[12]annulene derivatives harnessed by a diacetylene unit in each alkyl chain, porous two-dimensional networks with giant pores were formed at the liquid/graphite interface.
View Article and Find Full Text PDFWe have synthesized anthracene-acetylene oligomers, which contained one 10-substituted anthracene unit and one anthraquinone unit, by cyclization with Sonogashira coupling. X-ray analysis revealed an almost-planar framework and significant out-of-plane deformation around the inner carbonyl moiety because of steric hindrance. These compounds underwent self-association in solution and their association constants for monomer-dimer exchange were determined by variable-concentration (1)H NMR measurements in CDCl(3): 8 mol(-1) L (10-substituent: isopropyl), <5 mol(-1) L (methoxy), and 19 mol(-1) L (octyloxy).
View Article and Find Full Text PDFWith the use of a single building block, two nanoporous patterns with nearly equal packing density can be formed upon self-assembly at a liquid-solid interface. Moreover, the formation of both of these porous networks can be selectively and homogenously induced by changing external parameters like solvent, concentration, and temperature. Finally, their porous properties are exploited to host up to three different guest molecules in a spatially resolved way.
View Article and Find Full Text PDFThe reaction of tetrabutoxyoctadehydrodibenzo[12]annulene 2f with iodine under aerobic conditions was reexamined. Contrary to previous reports, the present results revealed the formation of both anti-diiodoindenofluorenedione and its syn isomer through the oxidation of the respective tetraiodoindenofluorenes, indicating the occurrence of two modes of iodine-induced transannular cyclization. This was supported by the reaction of 2f with bromine, which gave anti- and syn-hexabromodihydroindenofluorenes through interception of indenofluorene intermediates by bromine.
View Article and Find Full Text PDFHomochirality is essential to many biological systems, and plays a pivotal role in various technological applications. The generation of homochirality and an understanding of its mechanism from the single-molecule to supramolecular level have received much attention. Two-dimensional chirality is a subject of intense interest due to the unique possibilities and consequences of confining molecular self-assembly to surfaces or interfaces.
View Article and Find Full Text PDFSelf-assembled monolayers of a series of tetraalkoxy-substituted octadehydrodibenzo[12]annulene (DBA) derivatives 1c-g possessing butadiyne linkages were studied at the 1,2,4-trichlorobenzene (TCB) or 1-phenyloctane/graphite interface by scanning tunneling microscopy (STM). The purpose of this research is not only to investigate the structural variation of two-dimensional (2D) monolayers, but also to assess a possibility for peri-benzopolyacene formation by two-dimensionally controlled polymerization on a surface. As a result, the formation of three structures, porous, linear, and lamella structures, were observed by changing the alkyl chain length and the solute concentration.
View Article and Find Full Text PDFWe have studied the formation of stripe patterned films of ordered particle arrays on completely solvophilic substrates by using a self-organization technique. In this method, a substrate immersed in a suspension is withdrawn vertically at a controlled temperature. We have also systematically examined the effects of several experimental parameters.
View Article and Find Full Text PDFWe present here the formation of giant pores in surface-confined molecular networks of a triangular-shaped dehydrobenzo-[12]annulene derivative: the diameter of the pores reaches over 7 nm and the giant pores are used as templates to accommodate a giant molecular spoked wheel, which allows us to observe rotational and adsorption-desorption dynamics of single guest molecules.
View Article and Find Full Text PDF