Publications by authors named "Koji Ikuta"

MicroRNA expression analysis is an important screening tool for the early detection of cancer. In this study, we developed two portable three-dimensional microdevices for multiple singleplex RNA expression analysis by microRNA purification and qRT-PCR as a prototype for point-of-care testing. These microdevices are composed of several types of modules termed 'chemical IC chips'.

View Article and Find Full Text PDF

In microstereolithography, three-dimensional microstructures are created by scanning an ultraviolet laser on a photocurable resin and stacking several such layers to form the desired structure. By mixing different types of particles in the resin, the formed microstructures exhibit various physical properties. For example, the magnetism and density of the microstructure can be controlled by adding magnetic particles and microcapsules to the resin.

View Article and Find Full Text PDF

We can detect cancer in the early stages by validating the expression of cancer specific nucleic acids in the blood. In this report, we have developed the micro device for performing real-time polymerase chain reaction (real-time PCR), one of the methods used for determining the quantity of nucleic acids, using a small volume of reagent. This all-in-one device can perform real-time PCR with the inclusion of heating control and the analyzing system with optical sensor.

View Article and Find Full Text PDF

Electrospun nanofibers composed of biodegradable polymers are attractive candidates for cell culture scaffolds in tissue engineering. Their fine-meshed structures, resembling natural extracellular matrices, effectively interact with cell surfaces and promote cell proliferation. The application of electrospinning, however, is limited to two-dimensional (2D) or single tube-like scaffolds, and the fabrication of arbitrary three-dimensional (3D) scaffolds from electrospun nanofibers is still very difficult due to the fibers' continuous and entangled form.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells are expected to provide a source of tissue, a renewable cell source for tissue engineering, and a method for in vitro drug screening for patient-specific or disease-specific treatment. A simple technology by which iPS cells can be differentiated effectively and in large quantities is strongly desired. In this paper, a new device (Tapered Soft Stencil for Cluster Culture: TASCL) is proposed for the easy and efficient formation of EBs which can be used in regenerative medicine.

View Article and Find Full Text PDF

We have developed a novel three-dimensional (3D) microfabrication method for biodegradable polymers. Unlike conventional processes, our process satisfies high-resolution and high-speed requirements. The system design allows us the processing of microlevel forms by stacking up melted polymers from the nozzle.

View Article and Find Full Text PDF

We report the case of a solid-pseudopapillary tumor (SPT) of the head of the pancreas causing occlusion of the main pancreatic duct (MPD) and marked pancreatic atrophy distal to the tumor disproportionate to the tumor size. A 15-yr-old girl was diagnosed with 5-cm solid-pseudopapillary tumor of the pancreatic head with marked distal pancreatic atrophy. Endoscopic retrograde cholangiopancreatography demonstrated obstruction of the MPD in the pancreatic head.

View Article and Find Full Text PDF