Publications by authors named "Koji Fukudome"

Background: The current 3D-iFlow application can only measure the arrival time of contrast media through intensity values. If the flow rate could be estimated by 3D-iFlow, patient-specific hemodynamics could be determined within the scope of normal diagnostic management, eliminating the need for additional resources for blood flow rate estimation.

Objective: The aim of this study is to develop and validate a method for measuring the flow rate by data obtained from 3D-iFlow images - a prototype application in Four-dimensional digital subtraction angiography (4D-DSA).

View Article and Find Full Text PDF

To achieve good treatment outcomes in coil embolization for cerebral aneurysms, it is important to select an appropriate 1st coil for each aneurysm since it serves as a frame to support the subsequent coils to be deployed. However, its selection as appropriate size and length from a wide variety of lineups is not easy, especially for inexperienced neurosurgeons. We developed a machine learning model (MLM) to predict the optimal size and length of the 1st coil by learning information on patients and aneurysms that were previously treated with coil embolization successfully.

View Article and Find Full Text PDF

Objective: Although it has been proposed that aneurysm morphology is different after rupture, detailed research of the morphological changes using 3D imaging acquired before and after rupture has not been conducted because of the difficulty of data collection. Similarly, hemodynamic changes due to morphological alterations after rupture have not been analyzed. The aim of this study was to investigate the changes in morphology and hemodynamics observed after aneurysm rupture.

View Article and Find Full Text PDF

Background: Intracranial stents are used to treat aneurysms by diverting the blood flow from entering into the aneurysmal dome. Although delayed rupture is rare, clinical outcomes are extremely poor in such cases. Hemodynamics after stent deployment may be related to delayed rupture and a better understanding of the basic characteristics of pressure changes resulting from stent deployment is needed; therefore, this study investigated the relationships between hemodynamics in aneurysms of different sizes treated using stents of different wire mesh densities.

View Article and Find Full Text PDF

We developed a new technique for extracting patient-specific inflow conditions, such as the pulse cycle duration and blood flow velocity, from four-dimensional digital subtraction angiography images and experimentally examined its validity. The maximum error between the values extracted by the technique and measured values was 14.3%.

View Article and Find Full Text PDF

Background: Hemodynamics and their clinical outcome of cerebral aneurysms treated with flow diverter (FD) stents have thus far been investigated using computational fluid dynamics (CFD) simulations. Although human blood is characterized as a non-Newtonian patientspecific fluid, non-patient-specific blood properties (PSBP) were applied in most extant studies.

Objective: To investigate the hemodynamic effects caused by PSBPs in aneurysms treated with FD stents.

View Article and Find Full Text PDF

Objective: Relationships between aneurysm initiation and hemodynamic factors remain unclear since de novo aneurysms are rarely observed. Most previous computational fluid dynamics (CFD) studies have used artificially reproduced vessel geometries before aneurysm initiation for analysis. In this study, the authors investigated the hemodynamic factors related to aneurysm initiation by using angiographic images in patients with cerebral aneurysms taken before and after an aneurysm formation.

View Article and Find Full Text PDF

Background: We investigated the relationship between hemodynamic characteristics and clinical outcomes for aneurysms treated by the Derivo embolization device, a novel second-generation flow-diverter stent, using computational fluid dynamics (CFD).

Methods: Data were retrospectively obtained from 2 centers between 2017 and 2019. During the period, 23 patients were treated for 23 aneurysms with the Derivo embolization device.

View Article and Find Full Text PDF

A virtual stent deployment application was developed to estimate the appropriate and patient-specific size of a braided stent for patients who undergo endovascular treatment for intracranial aneurysms. Comparing between the simulated deployed and the actual stents, we evaluated the accuracy of the simulation results. Our results indicated that lengths of the virtual and actual stents matched well despite the actual stent being affected by a geometrical change of the parent artery.

View Article and Find Full Text PDF

Flow diverters (FDs) are widely employed as endovascular treatment devices for large or wide-neck cerebral aneurysms. Occasionally, overlapped FDs are deployed to enhance the flow diversion effect. In this study, we investigated the hemodynamics of overlapping FDs via computational fluid dynamics (CFD) simulations.

View Article and Find Full Text PDF

Objective: Coil compaction is directly related to the degree of cerebral aneurysmal recanalization. The degree of recanalization (DoR) was quantified by measuring the volume vacated by coil deformation. The purpose of this study was to clarify the hemodynamic and morphologic factors associated with coil compaction.

View Article and Find Full Text PDF

Research on the relationship between cerebralaneurysm initiation and hemodynamic parameters, but several open questions remain on initiation and growth mechanisms of cerebral aneurysms. If factors contributing to initiation were identified, it would be possible to predict the initiation of aneurysms. The purpose of this study is to investigate the relationship between cerebral aneurysm initiation and hemodynamic factors.

View Article and Find Full Text PDF

Rupture of cerebral aneurysms often causes subarachnoid hemorrhage which is a life-threatening condition with high mortality rates. Larger aneurysms are believed to be more likely to rupture and should therefore be treated. Recently, flow diverters (FDs) are widely used to treat large or wide neck aneurysms.

View Article and Find Full Text PDF

To clarify the mechanism of aneurysmal recanalization, it is necessary to understand the characteristics of the blood flow inside the aneurysm in particular the flow resistance generated by the coil. In studies using computational fluid dynamics (CFD), mainly two approaches have been used to model the coil embolized aneurysm; modeling the coils as porous media or by real coil geometries. In this study, we calculated the pressure drop along a vessel through a coiled region modeled as porous media or by real coil geometry and compared the pressure drop generated by the two coil models.

View Article and Find Full Text PDF

The sensor response has been reported to become highly nonlinear when the acceleration added to a thermal accelerator is very large, so the same response can be observed for two accelerations with different magnitudes and opposite signs. Some papers have reported the frequency response for the horizontal acceleration to be a first-order system, while others have reported it to be a second-order system. The response for the vertical acceleration has not been studied.

View Article and Find Full Text PDF