Background: The Apple Watch (AW) can record single-lead electrocardiograms (ECGs) and has been investigated for arrhythmia detection. In this study we evaluated its accuracy in identifying the origin of premature ventricular contractions (PVCs) vs. standard 12-lead ECGs.
View Article and Find Full Text PDFErythroid differentiation regulator 1 (Erdr1) is a cytokine known to play important roles in cell survival under stressful conditions, maintenance of cellular growth homeostasis, and activation of the immune system. However, the impact of Erdr1 on neurons remains undefined. In this study, we present novel evidence that Erdr1 plays a role in regulating glutathione (GSH) synthesis via glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein in the endoplasmic reticulum that holds excitatory amino acid carrier 1 (EAAC1) in neurons.
View Article and Find Full Text PDFNumerous basic studies have reported on the neuroprotective properties of several purine derivatives such as caffeine and uric acid (UA). Epidemiological studies have also shown the inverse association of appropriate caffeine intake or serum urate levels with neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson's disease (PD). The well-established neuroprotective mechanisms of caffeine and UA involve adenosine A receptor antagonism and antioxidant activity, respectively.
View Article and Find Full Text PDFPurine derivatives such as caffeine and uric acid have neuroprotective activities and are negatively correlated with the incidence of both Alzheimer's disease and Parkinson's disease. We have reported that an increment of intracellular glutathione (GSH) via cysteine uptake in neuronal cells is one of the mechanisms by which caffeine and uric acid confer neuroprotection. Here, we investigated whether caffeine metabolites such as paraxanthine, theophylline, theobromine, 1,7-dimethyluric acid and monomethylxanthines would increase cysteine uptake in mouse hippocampal slices.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system.
View Article and Find Full Text PDFThe number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders.
View Article and Find Full Text PDFGlutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production.
View Article and Find Full Text PDFThe establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants-particularly glutathione (GSH), which is one of the most important antioxidants in the human body-caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain.
View Article and Find Full Text PDFGlutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18.
View Article and Find Full Text PDFGlutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine that acts as an important neuroprotective molecule in the central nervous system. In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, GSH levels in the brain would be decreased before the onset, and GSH dysregulation is considered to be involved in the development of these neurodegenerative diseases. Cysteine uptake into neurons is the rate-limiting step for GSH synthesis.
View Article and Find Full Text PDFMonoclon Antib Immunodiagn Immunother
February 2021
Toll-like receptors (TLRs) sense microbial infection through recognition of pathogen-associated molecular patterns. For example, TLR4 responds to the lipopolysaccharide of gram-negative bacteria, whereas TLR2 recognizes a broad range of microbial ligands. Both receptors are, therefore, compelling targets for treating sepsis.
View Article and Find Full Text PDFMonoclon Antib Immunodiagn Immunother
December 2020
Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system and is involved in the pathogenesis of multiple diseases. Here, we report the antagonistic and ratized antibody, 52-1H4 e2 (e2), which completely inhibited lipopolysaccharide-induced interleukin-6 secretion . The average serum drug concentration was above 10 μg/mL for 28 days in rats injected with e2.
View Article and Find Full Text PDFCircadian rhythms are endogenous 24-h oscillators that regulate the sleep/wake cycles and the timing of biological systems to optimize physiology and behavior for the environmental day/night cycles. The systems are basically generated by transcription-translation feedback loops combined with post-transcriptional and post-translational modification. Recently, evidence is emerging that additional non-coding RNA-based mechanisms are also required to maintain proper clock function.
View Article and Find Full Text PDFAn analytical method for the simultaneous quantitation of ten trichothecenes of type A (HT-2 toxin, T-2 toxin, diacetoxyscirpenol, and neosolaniol) and type B (3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and fusarenon-X) in feed has been developed using liquid chromatography with tandem mass spectrometry. Mycotoxins extracted twice from samples using aqueous acetonitrile were purified using a multifunctional clean-up column, followed by a phospholipid removal column. Trichothecenes were analysed using liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry.
View Article and Find Full Text PDFCircadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases.
View Article and Find Full Text PDFSterigmatocystin (STC) and aflatoxin B (AFB) were analyzed in 246 corn samples, 126 soybean meal samples, and 861 formula feed samples from the Japanese market between April 2010 and March 2015. The detection rate, the highest concentration, and the mean concentration of STC were respectively 14%, 6.4 μg/kg, and 1.
View Article and Find Full Text PDFPro-opiomelanocortin (POMC)-expressing neurons provide α-melanocyte-stimulating hormone (α-MSH), which stimulates melanocortin 4 receptor to induce hypophagia by AMPK inhibition in the hypothalamus. α-MSH is produced by POMC cleavage in secretory granules and released. However, it is not known yet whether any posttranscriptional regulatory mechanism of POMC signaling exists upstream of the secretory granules in neurons.
View Article and Find Full Text PDFWe incubated Fusarium semitectum on sorghum and measured the production of zearalenone (ZEN) and ZEN-related compounds (zearalanone (ZAN), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL) and β-zearalanol (β-ZAL)) in the culture by LC-MS. Of the five ZEN-related compounds, ZAN and β-ZEL were mainly detected. The concentrations of ZEN and the five ZEN-related compounds increased until 9 days after incubation and then increased slightly or stayed constant between days 9 and 15.
View Article and Find Full Text PDFReactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions.
View Article and Find Full Text PDFA survey of the contamination of wheat, barley, and Japanese retail food by four Fusarium mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), and HT-2 toxin (HT-2), was performed between 2010 and 2012. A method for the simultaneous determination of the four mycotoxins by liquid chromatography-tandem mass spectrometry was validated by a small-scale interlaboratory study using two spiked wheat samples (DON was spiked at 20 and 100 μg/kg and ZEN, T-2, and HT-2 at 6 and 20 μg/kg in the respective samples). The recovery of the four mycotoxins ranged from 77.
View Article and Find Full Text PDFGlutathione (GSH) is a key antioxidant that plays an important neuroprotective role in the brain. Decreased GSH levels are associated with neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Here we show that a diurnal fluctuation of GSH levels is correlated with neuroprotective activity against oxidative stress in dopaminergic cells.
View Article and Find Full Text PDFGlutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis.
View Article and Find Full Text PDF