Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.
View Article and Find Full Text PDFCertain somatic mutations provide a fitness advantage to hematopoietic stem cells and lead to clonal expansion of mutant blood cells, known as clonal hematopoiesis (CH). Among the most common CH mutations, ASXL1 mutations pose the highest risk for cardiovascular diseases (CVDs), yet the mechanisms by which they contribute to CVDs are unclear. Here we show that hematopoietic cells harboring C-terminally truncated ASXL1 mutant (ASXL1-MT) accelerate the development of atherosclerosis in Ldlr mice.
View Article and Find Full Text PDFIntroduction: Clinical epidemiological data on monoclonal gammopathy of renal significance (MGRS) are lacking. In this retrospective observational study, MGRS was compared with B-cell or plasma cell malignancies (BCM/PCM) with renal involvement to clarify differences in their clinical features.
Methods: Among the 1408 renal biopsies performed at our hospital, 25 MGRS and 18 BCM/PCM patients were identified.
Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein.
View Article and Find Full Text PDFHospital wastewater is a reservoir for the environmental spread of clinically relevant antimicrobial-resistant bacteria and resistance genes. The aim of this study was to quantify total Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing E. coli, and carbapenemase-producing organisms (CPOs) and perform whole-genome sequencing-based characterization of these bacterial isolates in hospital wastewater samples collected bimonthly in Japan from January to November 2021.
View Article and Find Full Text PDFBackground: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells.
View Article and Find Full Text PDFDNA hypomethylating agents (HMAs) are used for the treatment of myeloid malignancies, although their therapeutic effects have been unsatisfactory. Here we show that CRISPR-Cas9 screening reveals that knockout of topoisomerase 1-binding arginine/serine-rich protein (TOPORS), which encodes a ubiquitin/SUMO E3 ligase, augments the efficacy of HMAs on myeloid leukemic cells with little effect on normal hematopoiesis, suggesting that TOPORS is involved in resistance to HMAs. HMAs are incorporated into the DNA and trap DNA methyltransferase-1 (DNMT1) to form DNA-DNMT1 crosslinks, which undergo SUMOylation, followed by proteasomal degradation.
View Article and Find Full Text PDFBackground: Peritoneal dialysis (PD)-related peritonitis is a major complication of PD. Wide variations in peritonitis prevention, treatment strategies and consequences are seen between countries. These between-country differences may result from modifiable risk factors and clinical practices.
View Article and Find Full Text PDFMaternal screening tests and prophylactic antibiotics are important to prevent neonatal and infant group B streptococcal (GBS) infections. The performance of enrichment broth media for GBS screening that are available in Japan is unclear. Whole-genome data of GBS isolates from pregnant women in Japan is lacking.
View Article and Find Full Text PDFEfflux pump antiporters confer drug resistance to bacteria by coupling proton import with the expulsion of antibiotics from the cytoplasm. Despite efforts there remains a lack of understanding as to how acid/base chemistry drives drug efflux. Here, we uncover the proton-coupling mechanism of the Staphylococcus aureus efflux pump NorA by elucidating structures in various protonation states of two essential acidic residues using cryo-EM.
View Article and Find Full Text PDFNanoscale electron transfer (ET) in solids is fundamental to the design of multifunctional nanomaterials, yet its process is not fully understood. Herein, through X-ray crystallography, we directly observe solid-state ET via a crystal-to-crystal process. We first demonstrate the creation of a robust and flexible electron acceptor/acceptor (A/A) double-wall nanotube crystal ([(Zn)(L)(L)]) with a large window (0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
The HapImmune platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment.
View Article and Find Full Text PDFMetabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is a major cause of end-stage kidney disease (ESKD). Vasopressin plays a pivotal role in ADPKD progression; therefore, the selective vasopressin V2 receptor antagonist tolvaptan is used as a key drug in the management of ADPKD. On the other hand, sodium-glucose cotransporter-2 inhibitors (SGLT2i), which may possibly stimulate vasopressin secretion due to the diuretic effect of the drug, have been shown to have both renal and cardioprotective effects in various populations, including those with non-diabetic chronic kidney disease.
View Article and Find Full Text PDFGan To Kagaku Ryoho
December 2023
In August 2022, a 59-year-old female noted a mass in her umbilicus and sought evaluation at Toyokawa City Hospital. Abdominal computed tomography(CT)scan revealed a 1.6 cm mass in the umbilical region, ascites in the pelvis, and increased absorption in the omentum.
View Article and Find Full Text PDFSARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction.
View Article and Find Full Text PDFThe Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice.
View Article and Find Full Text PDFFrustules, whose length spans from a few micrometers to more than a hundred micrometers, have been the subject of various modifications to improve their physical properties because of their complex porous silica structure. However, three-dimensional measurements of these changes can be challenging because of the complex 3D architecture and limitations of known methods. In this study, we present a new method that applies digital holographic microscopy (DHM) to analyze controlled etched frustules and observe real-time degradation of frustules at the single-cell level.
View Article and Find Full Text PDF