The recently approved HIV-1 integrase strand transfer inhibitor (INSTI) dolutegravir (DTG) (S/GSK1349572) has overall advantageous activity when tested in vitro against HIV-1 with raltegravir (RAL) and elvitegravir (EVG) resistance signature mutations. We conducted an in vitro resistance selection study using wild-type HIV-1 and mutants with the E92Q, Y143C, Y143R, Q148H, Q148K, Q148R, and N155H substitutions to assess the DTG in vitro barrier to resistance. No viral replication was observed at concentrations of ≥ 32 nM DTG, whereas viral replication was observed at 160 nM RAL or EVG in the mutants.
View Article and Find Full Text PDFPassage of HIV-1 in the presence of integrase inhibitors (INIs) generates resistant viruses that have mutations in the integrase region. Integrase-resistant mutations Q148K and Q148R were identified as primary mutations with the passage of HIV-1 IIIB in the presence of INIs S-1360 or S/GSK-364735, respectively. Secondary amino acid substitutions E138K or G140S were observed when passage with INI was continued.
View Article and Find Full Text PDFResistance passage studies were conducted with five INIs (integrase inhibitors) that have been tested in clinical trials to date: a new naphthyridinone-type INI S/GSK-364735, raltegravir, elvitegravir, L-870,810 and S-1360. In establishing the passage system and starting from concentrations several fold above the EC(50) value, resistance mutations against S-1360 and related diketoacid-type compounds could be isolated from infected MT-2 cell cultures from day 14 to 28. Q148R and F121Y were the two main pathways of resistance to S/GSK-364735.
View Article and Find Full Text PDFSeveral non-natural D-amino acid derivatives were introduced as P2/P3 residues in allophenylnorstatine-containing (Apns; (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid) HIV protease inhibitors. The synthetic analogues exhibited potent inhibitory activity against HIV-1 protease enzyme and HIV-1 replication in MT-4 cells. Structure-activity relationships revealed that D-cysteine or serine derivatives contributed to highly potent anti-HIV activities.
View Article and Find Full Text PDFThe naphthyridinone GSK364735 potently inhibited recombinant human immunodeficiency virus type 1 (HIV-1) integrase in a strand transfer assay (mean 50% inhibitory concentration +/- standard deviation, 8 +/- 2 nM). As expected based on the structure of the drug, it bound competitively with another two-metal binding inhibitor (Kd [binding constant], 6 +/- 4 nM). In a number of different cellular assays, GSK364735 inhibited HIV replication with potency at nanomolar concentrations (e.
View Article and Find Full Text PDFWe designed several HIV protease inhibitors with various d-cysteine derivatives as P(2)/P(3) moieties based on the structure of clinical drug candidate, KNI-764. Herein, we report their synthesis, HIV protease inhibitory activity, HIV IIIB cell inhibitory activity, cellular toxicity, and inhibitory activity against drug-resistant HIV strains. KNI-1931 showed distinct selectivity against HIV proteases and high potency against drug-resistant strains, surpassing those of Ritonavir and Nelfinavir.
View Article and Find Full Text PDFBackground: To enhance the antitumor efficacy of IL2 gene therapy, combinations of several other genes, such as p53, a tumor suppressor gene, or lymphotactin, a C-chemokine, and the IL2 gene are attempted, and synergistic effects are observed. We report here on the enhanced antitumor activity of a fusion protein (mSLC-IL2) comprised of a newly identified member of the CC-chemokine family, mouse SLC (mSLC), and mouse IL2 (mIL2).
Methods: We constructed mSLC-IL2 by connecting the N-terminus of mIL-2 to the C-terminus of mSLC using a two-amino-acid linker.