To synthesize natural or artificial life, it is critically important to understand the design principles of how biochemical networks generate particular cellular functions and evolve complex systems in comparison with engineering systems. Cellular systems maintain their robustness in the face of perturbations arising from environmental and genetic variations. In analogy to control engineering architectures, the complexity of modular structures within a cell can be attributed to the necessity of achieving robustness.
View Article and Find Full Text PDFBiochemical network maps are helpful for understanding the mechanism of how a collection of biochemical reactions generate particular functions within a cell. We developed a new and computationally feasible notation that enables drawing a wide resolution map from the domain-level reactions to phenomenological events and implemented it as the extended GUI network constructor of CADLIVE (Computer-Aided Design of LIVing systEms). The new notation presents 'Domain expansion' for proteins and RNAs, 'Virtual reaction and nodes' that are responsible for illustrating domain-based interaction and 'InnerLink' that links real complex nodes to virtual nodes to illustrate the exact components of the real complex.
View Article and Find Full Text PDF