We found the mineralization of Cu during long-term Cu2+ adsorption onto dry baker's yeast cells phosphorylated using sodium cyclo-triphosphate. Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy confirmed that the elemental composition of minerals were copper, phosphorus, and oxygen. Synchrotron-based X-ray absorption fine structure showed that the local structure around Cu atoms deposited on the mineral was almost identical to that of commercial copper (II) phosphate Cu3(PO4)2∙3H2O.
View Article and Find Full Text PDFBiosorption is a cost-effective and simple technique for removing heavy metals and rare earth elements from aqueous solution. Here, metals were recovered from aqueous solutions using phosphorylated dry baker's yeast cells. The cells were phosphorylated using cyclo-triphosphate, NaPO.
View Article and Find Full Text PDFTo explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin.
View Article and Find Full Text PDFAssembly morphology made from lipids is controlled by the balance between the polar headgroup and the hydrophobic tails. In this study, we showed the various generations of polyamidoamine dendron-bearing lipids could form various assembly morphologies. Furthermore, the effect of the assembly morphologies made from dendron-bearing lipids for transfection abilities were examined.
View Article and Find Full Text PDFActive targeting of the liposome is an attractive strategy for drug delivery and in vivo bio-imaging. We previously reported the specific accumulation of Sialyl Lewis X (SLX) liposome to inflamed tissue in arthritic model mice or tumor-bearing mice. SLX-liposome encapsulation with fluorescent substances allows for the visualization of these liposomes by the time-dependent transvascular accumulation of fluorescent signals in the histological sections.
View Article and Find Full Text PDFThe detailed properties of the enzyme from Pseudomonas aeruginosa, which catalyzes the N-acyl linkage between myristic acid and the N-terminal glycine residue of the octapeptide GNAAAARR-NH(2) (PKA) in aqueous solution without ATP and CoA, were studied. The substrate specificity for the acyl peptide in the synthetic reaction was examined, and it was found that at least eight amino acid residues are required for the reaction and that the N-terminal glycine residue is not absolutely essential for the reaction because the activity was detected using the octapeptide that has an N-terminal alanine. The activity was also strongly affected by the amino acid sequence because the activity was very weak in the reaction using GARASVLS-NH(2) (HIV-1p17(gag)).
View Article and Find Full Text PDFNELL1 is an extracellular protein inducing osteogenic differentiation and bone formation of osteoblastic cells. To elucidate the intracellular signaling cascade evoked by NELL1, we have shown that NELL1 protein transiently activates the MAPK signaling cascade, induces the phosphorylation of Runx2, and promotes the rapid intracellular accumulation of Tyr-phosphorylated proteins. Unlike BMP2, NELL1 protein does not activate the Smad signaling cascade.
View Article and Find Full Text PDFThe deletion of MCD4 leads to an increase in beta-1,6-glucan level and a decrease in glycosylphosphatidylinositol-anchored protein and mannan levels in the cell wall of Saccharomyces cerevisiae, suggesting that mcd4 deletion mutant (mcd4Delta) displays beta-glucans on the cell surface without a mannan cover. An observation of the cell surface of mcd4Delta cells and an examination of the effect of contact between mcd4Delta cells and mouse macrophages indicated that macrophages were activated by contact with mcd4Delta cells displaying beta-glucans on the cell surface. We further examined the effect of intraperitoneal ethanol-fixed mcd4Delta cells on the survival period of mice infected with Candida albicans.
View Article and Find Full Text PDFWe prepared the liposome binding Sialyl Lewis X (SLX) on the surface in order to specifically and efficiently deliver substances (fluorescent materials, chemical substances, proteins, genes, etc.) to inflammation or tumor regions. The liposome with SLX (SLX-Lipo-Cy5.
View Article and Find Full Text PDFThe enzyme that catalyzes N-acyl linkage between myristic acid and the NH(2)-terminal glycine residue of the octapeptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-NH(2) in aqueous solution without ATP and coenzyme A was found in Pseudomonas aeruginosa. The enzyme was purified from cell-free crude extract using DEAE-Cellulose, Sephadex G-200, CM-Sephadex C-50, and hydroxyapatite column chromatographies, and then purified approximately 1900-fold with about 1.5% recovery of enzyme activity from the crude extract.
View Article and Find Full Text PDFPreviously we reported that valinomycin inhibited hyphal growth and induced growth as a chain of yeast cells under hyphal growth induction conditions in Candida albicans. To elucidate the hyphal growth inhibition by valinomycin, we examined the effect of various chemicals on the morphology and found that miconazole inhibited hyphal growth as well as valinomycin: both compounds promoted the leakage of potassium from cells. Analysis of intracellular potassium suggested that hyphal cells contain potassium at high concentrations in comparison with yeast cells.
View Article and Find Full Text PDFMicrobial metabolites were screened for inhibitors of hyphal growth in Candida albicans. Inhibitory activity was found among metabolites of a culture of an actinomycete, which had been isolated from soil. The active substance inhibited hyphal growth and induced growth as a chain of yeast cells under hyphal growth induction conditions.
View Article and Find Full Text PDFMost proteins involved in the synthesis of the GPI core structure of Saccharomyces cerevisiae are essential for growth. To explore the relationship between the GPI anchor structure and beta-1,6-glucan synthesis, we screened deletion mutants in genes involved in GPI synthesis for osmotic remedial growth. Heterozygous diploid strains were dissected on medium with osmotic support and slow growth of the mcd 4 deletion mutant was observed.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2005
Staining with calcofluor white (CFW), which is known to bind chitin-rich areas of the cell wall, revealed a difference in the fluorescence intensity at the hyphal tip between Candida albicans hyphal cells that were grown in modified Lee (M-Lee) and SPG media. The fluorescence intensity at the tip increased with the addition of salts and sugar to SPG. The chitin levels per dry cell weight in cells grown in modified Lee and SPG with 1.
View Article and Find Full Text PDFAlthough ROT1 is essential for growth of Saccharomyces cerevisiae strain BY4741, the growth of a rot1Delta haploid was partially restored by the addition of 0.6 M sorbitol to the growth medium. Rot1p is predicted to contain 256 amino acids, to have a molecular mass of 29 kDa, and to possess a transmembrane domain near its C-terminus.
View Article and Find Full Text PDFScreening for morphological mutants of a haploid strain of Saccharomyces cerevisiae was done on the basis of their cell-shape on a solid medium containing isoamyl alcohol, which causes cell elongation, to obtain information on the morphogenesis. Mutant J19, which had pseudohyphae in liquid medium even in the absence of isoamyl alcohol, had many elongated cells. Few reports exist of haploid cells growing as pseudohyphae in liquid culture.
View Article and Find Full Text PDFThe sequencing of the human genome has revolutionized biology and led to an astounding variety of technologies and bioinformatics tools, enabling researchers to study expression of genes, the function of proteins, metabolism, and genetic differences within populations and between individuals. These scientific advances are making an impact in the medical research community and hold great promise for prevention, diagnosis, and treatment of diseases. This developing field also holds great promise for improving the scientific basis for understanding the potential impacts of chemicals on health and the environment.
View Article and Find Full Text PDF