The role of cardiac sarcolemmal ATP-sensitive K+ (K(ATP)) channels in the regulation of sinoatrial node (SAN) automaticity is not well defined. Using mice with homozygous knockout (KO) of the Kir6.2 (a pore-forming subunit of cardiac K(ATP) channel) gene, we investigated the pathophysiological role of K(ATP) channels in SAN cells during hypoxia.
View Article and Find Full Text PDFThe angiotensin II type 1 (AT(1)) receptor is a G protein-coupled receptor that has a crucial role in the development of load-induced cardiac hypertrophy. Here, we show that cell stretch leads to activation of the AT(1) receptor, which undergoes an anticlockwise rotation and a shift of transmembrane (TM) 7 into the ligand-binding pocket. As an inverse agonist, candesartan suppressed the stretch-induced helical movement of TM7 through the bindings of the carboxyl group of candesartan to the specific residues of the receptor.
View Article and Find Full Text PDF