Publications by authors named "Kohsuke Honda"

We isolated six strains from Shirahama Hot Spring in Japan. Complete genome sequences, determined by combining Oxford Nanopore long-read and Illumina short-read sequence data, revealed that they showed >99.9% average nucleotide identities with each other and approximately 97% to the genome of the type strain HB8.

View Article and Find Full Text PDF

Microbeads of biodegradable polyhydroxybutyrate (PHB) offer environmental benefits and economic competitiveness. The aim of this study was to encapsulate a water-soluble bioactive compound, niacinamide (NIA), in a pH-responsive natural matrix composed of PHB and cellulose acetate phthalate (CAP) by double emulsification (W1/O/W2) to improve the encapsulation efficiency (%EE) and loading capacity (%LC). PHB was produced in-house by Escherichia coli JM109 pUC19-23119phaCAB without the inducing agent isopropyl β-D-1-thiogalactopyranoside (IPTG).

View Article and Find Full Text PDF

In natural microbiomes, microorganisms interact with each other and exhibit diverse functions. Microbiome engineering, which enables bacterial knockdown, is a promising method to elucidate the functions of targeted bacteria in microbiomes. However, few methods to selectively kill target microorganisms in the microbiome without affecting the growth of nontarget microorganisms are available.

View Article and Find Full Text PDF

Microbiome engineering is an emerging research field that aims to design an artificial microbiome and modulate its function. In particular, subtractive modification of the microbiome allows us to create an artificial microbiome without the microorganism of interest and to evaluate its functions and interactions with other constituent bacteria. However, few techniques that can specifically remove only a single species from a large number of microorganisms and can be applied universally to a variety of microorganisms have been developed.

View Article and Find Full Text PDF

Small heat shock proteins (HSPs), such as HSP20, represent cellular thermal resistance mechanisms, to avoid protein aggregation at elevated temperatures. Recombinantly expressed HSP20s serve as a molecular tool for improving the tolerance of living cells to various physical and chemical stressors. Here, we aimed to heterologously express 18 HSP20s from 12 thermotolerant bacteria in Escherichia coli and evaluate their effects on various physical and chemical cellular stresses.

View Article and Find Full Text PDF

The aim of this study was to utilize cassava pulp to prepare biocomposites comprising microcrystalline cellulose from cassava pulp (CP-MCC) as a filler and polyhydroxybutyrate (PHB) synthesized in-house by Cupriavidus necator strain A-04. The CP-MCC was extracted from fresh cassava pulp. Next, the CP-MCC surface was modified with butyryl chloride (esterified to CP-MCC butyrate) to improve dissolution and compatibility with the PHB.

View Article and Find Full Text PDF

Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system.

View Article and Find Full Text PDF

Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli.

View Article and Find Full Text PDF

Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries.

View Article and Find Full Text PDF

Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing.

View Article and Find Full Text PDF

Affinity purification of recombinant proteins is an essential technique in biotechnology. However, current affinity purification methods are very cost-intensive, and this imposes limits on versatile use of affinity purification for obtaining purified proteins for a variety of applications. To overcome this problem, we developed a new affinity purification system which we call CSAP (chitin- and streptavidin-mediated affinity purification) for low-cost purification of Strep-tag II fusion proteins.

View Article and Find Full Text PDF

Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment.

View Article and Find Full Text PDF

Pineapple leaf fibres are an abundant agricultural waste product that contains 26.9% cellulose. The objective of this study was to prepare fully degradable green biocomposites made of polyhydroxybutyrate (PHB) and microcrystalline cellulose from pineapple leaf fibres (PALF-MCC).

View Article and Find Full Text PDF

β-hydroxy amino acids, such as serine, threonine, and phenylserine, are important compounds for medical purposes. To date, there has been only limited exploration of thermostable serine hydroxylmethyltransferase (SHMT) for the synthesis of these amino acids, despite the great potential that thermostable enzymes may offer for commercial use due to their high stability and catalytic efficiencies. ITBSHMT_1 (ITB serine hydroxylmethyltransferase clone number 1) from thermophilic and methanol-tolerant bacteria Pseudoxanthomonas taiwanensis AL17 was successfully cloned.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et al., ChemCatChem 2018, 10, 5597-5601).

View Article and Find Full Text PDF

Background: There has been an increasing demand for optically pure d-lactic and l-lactic acid for the production of stereocomplex-type polylactic acid. The d-lactic acid production from lignocellulosic biomass is important owing to its great abundance in nature. Corn steep liquor (CSL) is a cheap nitrogen source used for industrial fermentation, though it contains a significant amount of l-lactic acid, which decreases the optical purity of d-lactic acid produced.

View Article and Find Full Text PDF

The demand for the amino acid l-cysteine is increasing in the food, cosmetic, and pharmaceutical industries. Conventionally, the commercial production of l-cysteine is achieved by its extraction from the acid hydrolysate of hair and feathers. However, this production method is associated with the release of environmentally hazardous wastewater.

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) and threonine aldolase are classified as fold type I pyridoxal-5'-phosphate-dependent enzymes and engaged in glycine biosynthesis from serine and threonine, respectively. The acidothermophilic archaeon Thermoplasma acidophilum possesses two distinct SHMT genes, while there is no gene encoding threonine aldolase in its genome. In the present study, the two SHMT genes (Ta0811 and Ta1509) were heterologously expressed in Escherichia coli and Thermococcus kodakarensis, respectively, and biochemical properties of their products were investigated.

View Article and Find Full Text PDF

The present study attempted to increase poly(3-hydroxybutyrate) (PHB) production by improving expression of PHB biosynthesis operon derived from strain A-04 using various types of promoters. The intact PHB biosynthesis operon of A-04, an alkaline tolerant strain isolated in Thailand with a high degree of 16S rRNA sequence similarity with H16, was subcloned into pGEX-6P-1, pColdI, pColdTF, pBAD/Thio-TOPO, and pUC19 (native promoter) and transformed into JM109. While the gene was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a valuable genome editing tool for microorganisms. However, the commonly used Cas9 nuclease derived from Streptococcus pyogenes (SpCas9) is not applicable to many industrially relevant bacteria, due to its cytotoxicity and large size (1368 amino acids [aa]). We developed an alternative genome editing system using a miniature Cas12f1 nuclease (529 aa) derived from an uncultured archaeon, Un1Cas12f1.

View Article and Find Full Text PDF

strain A-04 has shown 16S rRNA gene identity to the well-known industrial strain H16. Nevertheless, the cell characteristics and polyhydroxyalkanoate (PHA) production ability of strain A-04 were different from those of H16. This study aimed to express PHA biosynthesis genes of strain A-04 in via an arabinose-inducible expression system.

View Article and Find Full Text PDF

Coenzyme A (CoA) is an essential cofactor present in all domains of life and is involved in numerous metabolic pathways, including fatty acid metabolism, pyruvate oxidation through the tricarboxylic acid (TCA) cycle, and the production of secondary metabolites. This characteristic makes CoA a commercially valuable compound in the pharmaceutical, cosmetic, and clinical industries. However, CoA is difficult to accumulate in living cells at a high level, since it is consumed in multiple metabolic pathways, hampering its manufacturing by typical cell cultivation and extraction approaches.

View Article and Find Full Text PDF

Linoleic acid (LA) has garnered much attention due to its potential applications in the oleochemical and nutraceutical industries. The oleaginous yeast Rhodotorula toruloides has outstanding lipogenecity, and is considered a potential alternative to the current plant-based platforms for LA production. Δ12-fatty acid desaturases (Δ12-Fads) are involved in LA synthesis in various fungi and yeasts, but their functions in R.

View Article and Find Full Text PDF

Growth temperature is one of the most representative biological parameters for characterizing living organisms. Prokaryotes have been isolated from various temperature environments and show wide diversity in their growth temperatures. We herein constructed a database of growth TEMPeratures of Usual and RAre prokaryotes (TEMPURA, http://togodb.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: