Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction.
View Article and Find Full Text PDFVenovenous extracorporeal membrane oxygenation (VV-ECMO) is a life-saving therapy for critically ill patients, but it carries an increased risk of thrombosis due to blood interacting with non-physiological surfaces. While the relationship between clinical variables and thrombosis remains unclear, our study aimed to identify which factors are most predictive of thrombosis. The Extracorporeal Life Support Organization Registry was queried to obtain a cohort of VV-ECMO patients aged 18 years and older from 2015 to 2019.
View Article and Find Full Text PDFBackground: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk.
View Article and Find Full Text PDFThe blood-brain barrier is composed of microvascular endothelial cells, immune cells, and astrocytes that work in concert with the coagulation cascade to control inflammation and immune cell infiltration into the central nervous system. Endothelial cell dysfunction leading to increased permeability and compromised barrier function are hallmarks of neuroinflammatory and autoimmune disorders, including multiple sclerosis (MS). Therapeutic strategies that improve or protect endothelial barrier function may be beneficial in the treatment or prevention of neuroinflammatory diseases.
View Article and Find Full Text PDFPurpose Of Review: This review summarizes the pathophysiology and potential therapeutic options for treatment of multiple sclerosis, a common neuronal demyelinating disorder affecting 2.2 million people worldwide. As an autoimmune disorder, multiple sclerosis is associated with neuroinflammation and increased permeability of the blood-brain barrier (BBB), although the cause linking multiple sclerosis with compromised barrier function remains ill-defined.
View Article and Find Full Text PDFPromotion and tenure (P&T) remain the central tenets of academia. The criteria for P&T both create and reflect the mission of an institution. The discipline of biomedical engineering is built upon the invention and translation of tools to address unmet clinical needs.
View Article and Find Full Text PDFMultiple sclerosis (MS) is the most common causes of non-traumatic disability in young adults worldwide. MS pathophysiologies include the formation of inflammatory lesions, axonal damage and demyelination, and blood brain barrier (BBB) disruption. Coagulation proteins, including factor (F)XII, can serve as important mediators of the adaptive immune response during neuroinflammation.
View Article and Find Full Text PDFObjective: Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function.
View Article and Find Full Text PDFSemin Thromb Hemost
October 2024
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation.
View Article and Find Full Text PDFThe tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research.
View Article and Find Full Text PDFIntroduction: Inflammatory activation of the vascular endothelium leads to overexpression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), contributing to the pro-thrombotic state underpinning atherogenesis. While the role of TEC family kinases (TFKs) in mediating inflammatory cell and platelet activation is well defined, the role of TFKs in vascular endothelial activation remains unclear. We investigated the role of TFKs in endothelial cell activation and in a nonhuman primate model of diet-induced atherosclerosis .
View Article and Find Full Text PDFErythrocytosis is a well-recognized consequence of exogenous testosterone, however its prevalence and contributions to thrombosis remain unknown in the context of gender-affirming hormonal therapy. We undertook a retrospective study of transgender and non-binary (TGNB) adults receiving exogenous testosterone. In the retrospective sample, 923 transgender individuals receiving testosterone were identified with 519 having documented pre- and post-testosterone hemoglobin and hematocrit (Hgb/Hct).
View Article and Find Full Text PDFExtracorporeal membrane oxygenation (ECMO) provides lifesaving circulatory support and gas exchange, although hematologic complications are frequent. The relationship between ECMO and severe thrombocytopenia (platelet count <50 × 10/L) remains ill-defined. We performed a cohort study of 67 patients who received ECMO between 2016 and 2019, of which 65.
View Article and Find Full Text PDFIntroduction: Vascular devices such as stents, hemodialyzers, and membrane oxygenators can activate blood coagulation and often require the use of systemic anticoagulants to selectively prevent intravascular thrombotic/embolic events or extracorporeal device failure. Coagulation factor (F)XII of the contact activation system has been shown to play an important role in initiating vascular device surface-initiated thrombus formation. As FXII is dispensable for hemostasis, targeting the contact activation system holds promise as a significantly safer strategy than traditional antithrombotics for preventing vascular device-associated thrombosis.
View Article and Find Full Text PDFSpleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (BTK) play critical roles in platelet physiology, facilitating intracellular immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling downstream of platelet glycoprotein VI (GPVI) and GPIIb/IIIa receptors. Small molecule tyrosine kinase inhibitors (TKIs) targeting Syk and BTK have been developed as antineoplastic and anti-inflammatory therapeutics and have also gained interest as antiplatelet agents. Here, we investigate the effects of 12 different Syk and BTK inhibitors on GPVI-mediated platelet signaling and function.
View Article and Find Full Text PDFActivation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen.
View Article and Find Full Text PDFExtracorporeal membrane oxygenation (ECMO) protocols generally require systemic anticoagulation with heparin to prevent circuit thrombosis. The prevalence, risk factors, and outcomes of heparin resistance in this setting are ill-defined. To better understand the prevalence and clinical consequences of heparin resistance in this population, we conducted a retrospective analysis of all patients treated with ECMO at a single academic medical center between 2016 and 2019.
View Article and Find Full Text PDFPurpose: Cyclin-dependent kinase (CDK) 4/6 inhibitors are integral treatment for advanced hormone receptor positive breast cancer; however, venous thromboembolic events (VTE) occurred in 1%-5% of clinical trial patients. Thrombosis rates in the real-world setting remain unclear. We aimed to define the rate of thromboembolic events, risk factors for thrombosis on CDK 4/6 inhibitors and evaluate the Khorana VTE risk score as a predictive tool for VTE in patients on CDK 4/6 therapy.
View Article and Find Full Text PDFIntroduction: Interventions that could prevent thrombosis, clinical decompensation, and respiratory compromise in patients with novel coronavirus disease (COVID-19) are key to decrease mortality rate. Studies show that profound cytokine release and excessive activation of blood coagulation appear to be key drivers of COVID-19 associated mortality. Since limited methods exist for assessing the effects of anticoagulants on hemostasis, the development of novel therapies to safely prevent thrombosis in COVID-19 patients relies on preclinical animal models and early phase human trials.
View Article and Find Full Text PDF