Genetically modified, induced pluripotent stem cells (iPSCs) offer a promising allogeneic source for the generation of functionally enhanced, chimeric antigen receptor (CAR) T cells. However, the signaling of CARs during early T cell development and the removal of the endogenous T cell receptor required to prevent alloreactivity pose significant challenges to the production of mature conventional CAR T cells from iPSCs. Here, we show that TCR-null, CD8αβ CAR T cells can be efficiently generated from iPSCs by engineering stage-specific onset of CAR expression and signaling to both permit conventional T cell development and to induce efficient positive selection.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Recombinant adeno-associated viruses (rAAV) are promising for applications in many genome editing techniques through their effectiveness as carriers of DNA homologous donors into primary hematopoietic stem and progenitor cells (HSPCs), but they have many outstanding concerns. Specifically, their biomanufacturing and the variety of factors that influence the quality and consistency of rAAV preps are in question. During the process of rAAV packaging, a cell line is transfected with several DNA plasmids that collectively encode all the necessary information to allow for viral packaging.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
X-linked lymphoproliferative disease (XLP1) results from gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP.
View Article and Find Full Text PDFCurrently, principles of tissue engineering and implantology are uniformly applied to all bone sites, disregarding inherent differences in collagen, mineral composition, and healing rates between craniofacial and long bones. These differences could potentially influence bone quality during the healing process. Evaluating bone quality during healing is crucial for understanding local mechanical properties in regeneration and implant osseointegration.
View Article and Find Full Text PDFIncreasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions.
View Article and Find Full Text PDFA major limitation of gene therapy for sickle cell disease (SCD) is the availability and access to a potentially curative one-time treatment, due to high treatment costs. We have developed a high-titer bifunctional lentiviral vector (LVV) in a vector backbone that has reduced size, high vector yields, and efficient gene transfer to human CD34 hematopoietic stem and progenitor cells (HSPCs). This LVV contains locus control region cores expressing an anti-sickling β-globin gene and two microRNA-adapted short hairpin RNA simultaneously targeting and transcripts to maximally induce fetal hemoglobin (HbF) expression.
View Article and Find Full Text PDFViral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days).
View Article and Find Full Text PDFAt present, a substantial number of individuals in the US face limited English proficiency (LEP), posing difficulties for healthcare providers. Language barriers between healthcare providers and patients can lead to poor quality of care, especially in patients with hyperacute conditions such as stroke, myocardial infarction, acute trauma, and more. In the intensive care unit (ICU), diagnosis and rapid treatment decision-making rely on taking an accurate patient history and physical exam.
View Article and Find Full Text PDFOsteocytes, the most abundant cell type in bone, play a crucial role in mechanosensation and signaling for bone formation and resorption. These cells reside within a complex lacuno-canalicular network (OLCN). Osteocyte signaling is reduced under diabetic conditions, and both type 1 and type 2 diabetes lead to reduced bone turnover, perturbed bone composition, and increased fracture risk.
View Article and Find Full Text PDFSevere combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.
View Article and Find Full Text PDFBackground: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described.
Objectives: We sought to study HCT for p47phox CGD in North America.
J Allergy Clin Immunol Pract
May 2024
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy.
View Article and Find Full Text PDFSevere combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years).
View Article and Find Full Text PDFDespite the ups and downs in the field over three decades, the science of gene therapy has continued to advance and provide enduring treatments for increasing number of diseases. There are active clinical trials approaching a variety of inherited and acquired disorders of different organ systems. Approaches include ex vivo modification of hematologic stem cells (HSC), T lymphocytes and other immune cells, as well as in vivo delivery of genes or gene editing reagents to the relevant target cells by either local or systemic administration.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2024
Background: The incidence of secondary malignancies associated with busulfan exposure is considered low, but has been poorly characterized. Because this alkylating agent is increasingly utilized as conditioning prior to gene therapy in nonmalignant hematologic and related disorders, more precise characterization of busulfan's potential contribution to subsequent malignant risk is warranted.
Procedure: We conducted a literature-based assessment of busulfan and subsequent late effects, with emphasis on secondary malignancies, identifying publications via PubMed searches, and selecting those reporting at least 3 years of follow-up.
Background: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT).
Objective: We investigated outcomes of HCT for severe combined immunodeficiency (SCID).
Methods: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers.
J Allergy Clin Immunol
December 2023
Background: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection.
View Article and Find Full Text PDFIntracellular delivery technologies that are cost-effective, non-cytotoxic, efficient, and cargo-agnostic are needed to enable the manufacturing of cell-based therapies as well as gene manipulation for research applications. Current technologies capable of delivering large cargoes, such as plasmids and CRISPR-Cas9 ribonucleoproteins (RNPs), are plagued with high costs and/or cytotoxicity and often require substantial specialized equipment and reagents, which may not be available in resource-limited settings. Here, we report an intracellular delivery technology that can be assembled from materials available in most research laboratories, thus democratizing access to intracellular delivery for researchers and clinicians in low-resource areas of the world.
View Article and Find Full Text PDFThe approved dose of bosutinib in chronic phase CML is 400 mg QD in first-line and 500 mg QD in later-line treatment. However, given that gastrointestinal (GI) toxicity typically occurs early after treatment initiation, physicians often tend to start therapy with lower doses although this has never been tested systematically in prospective trials in the Western world. The Bosutinib Dose Optimization (BODO) Study, a multicenter phase II study, investigated the tolerability and efficacy of a step-in dosing concept of bosutinib (starting at 300 mg QD) in chronic phase CML patients in 2 or 3 line who were intolerant and/or refractory to previous TKI treatment.
View Article and Find Full Text PDF