Proteins and antibodies labeled with biotin have been widely used for protein analysis, enzyme immunoassays, and diagnoses. Presently, they are prepared using either a chemical reaction involving a biotin N-hydroxysuccinimide (NHS) ester compound or by enzymatic biotin ligation using a combination of a biotinylation-peptide tag and Escherichia coli BirA. However, these methods are relatively complicated.
View Article and Find Full Text PDFProteolysis-targeting chimaeras (PROTACs) as well as molecular glues such as immunomodulatory drugs (IMiDs) and indisulam are drugs that induce interactions between substrate proteins and an E3 ubiquitin ligases for targeted protein degradation. Here, we develop a workflow based on proximity-dependent biotinylation by AirID to identify drug-induced neo-substrates of the E3 ligase cereblon (CRBN). Using AirID-CRBN, we detect IMiD-dependent biotinylation of CRBN neo-substrates in vitro and identify biotinylated peptides of well-known neo-substrates by mass spectrometry with high specificity and selectivity.
View Article and Find Full Text PDFProtein ubiquitinations play pivotal roles in many cellular processes, including homeostasis, responses to various stimulations, and progression of diseases. Deubiquitinating enzymes (DUBs) remove ubiquitin molecules from ubiquitinated proteins and cleave the polyubiquitin chain, thus negatively regulating numerous ubiquitin-dependent processes. Dysfunctions of many DUBs reportedly cause various diseases; therefore, DUBs are considered as important drug targets, although the biochemical characteristics and cellular functions of many DUBs are still unclear.
View Article and Find Full Text PDFProximity biotinylation based on BirA enzymes such as BioID (BirA*) and TurboID is a key technology for identifying proteins that interact with a target protein in a cell or organism. However, there have been some improvements in the enzymes that are used for that purpose. Here, we demonstrate a novel BirA enzyme, AirID (ancestral BirA for proximity-dependent biotin identification), which was designed de novo using an ancestral enzyme reconstruction algorithm and metagenome data.
View Article and Find Full Text PDFAntibodies are widely used for the detection of specific molecules such as peptides, proteins, and chemical compounds. The specificity of an antibody is therefore its most important feature. However, it is very difficult to confirm antibody specificity.
View Article and Find Full Text PDFThe tumor suppressor CYLD is a deubiquitinating enzyme that suppresses polyubiquitin-dependent signaling pathways, including the proinflammatory and cell growth-promoting NF-κB pathway. Missense mutations in the gene are present in individuals with syndromes such as multiple familial trichoepithelioma (MFT), but the pathogenic roles of these mutations remain unclear. Recent studies have shown that CYLD interacts with a RING finger domain protein, mind bomb homologue 2 (MIB2), in the regulation of NOTCH signaling.
View Article and Find Full Text PDFEukaryotic translation initiation factor 3 subunit D (EIF3D) binds to the 5'-cap of specific mRNAs, initiating their translation into polypeptides. From a pathological standpoint, EIF3D has been observed to be essential for cell growth in various cancer types, and cancer patients with high EIF3D mRNA levels exhibit poor prognosis, indicating involvement of EIF3D in oncogenesis. In this study, we found, by mass spectrometry, that Cullin-3 (CUL3)/KCTD10 ubiquitin (Ub) ligase forms a complex with EIF3D.
View Article and Find Full Text PDFNuclear factor-κB (NF-κB) proteins are transcription factors that play key roles in regulating most immune responses and cell death. Constitutively active NF-κB has been shown to exhibit chemoresistance by inducing anti-apoptosis in tumor cells. Multiple myeloma is known as a constitutive NF-κB activating disease, and the proteasome inhibitor bortezomib is used to treat multiple myeloma and mantle cell lymphoma.
View Article and Find Full Text PDFThe wheat germ cell-free protein synthesis system has a significant advantage for high-throughput production of eukaryotic multidomain proteins in a folded state. In this chapter, we describe two kinds of methods for performing autophosphorylation assay of plant receptor kinases (PRKs) by using the wheat cell-free system. One is an in vitro kinase assay performed using biotin-streptavidin affinity purification technology, and the other is a luminescence-based high-throughput assay for autophosphorylation analysis.
View Article and Find Full Text PDFThe wheat germ cell-free protein synthesis system has been used as a eukaryotic protein production system since it was first reported in 1964. Although initially the productivity of this system was not very high, it has now become one of the most versatile protein production systems, thanks to the enhancements made by several groups. In this chapter, we report a protein production method for plant receptor kinases using the wheat cell-free system.
View Article and Find Full Text PDFThere are many strategies to purify recombinant proteins of interest, and affinity purification utilizing monoclonal antibody that targets a linear epitope sequence is one of the essential techniques used in current biochemistry and structural biology. Here we introduce a new protein purification system using a very short CP5 tag. First, we selected anti-dopamine receptor D1 (DRD1) rabbit monoclonal antibody clone Ra62 (Ra62 antibody) as capture antibody, and identified its minimal epitope sequence as a 5-amino-acid sequence at C-terminal of DRD1 (GQHPT-COOH, D1CE sequence).
View Article and Find Full Text PDF