Publications by authors named "Kohjiro Nagao"

Temperature affects a variety of cellular processes because the molecular motion of cellular constituents and the rate of biochemical reactions are sensitive to temperature changes. Thus, the adaptation to temperature is necessary to maintain cellular functions during temperature fluctuation, particularly in poikilothermic organisms. For a wide range of organisms, cellular lipid molecules play a pivotal role during thermal adaptation.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid β in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states.

View Article and Find Full Text PDF

Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs.

View Article and Find Full Text PDF

Cellular lipid synthesis and transport are governed by intricate protein networks. Although genetic screening should contribute to deciphering the regulatory networks of lipid metabolism, technical challenges remain-especially for high-throughput readouts of lipid phenotypes. Here, we coupled organelle-selective click labeling of phosphatidylcholine (PC) with flow cytometry-based CRISPR screening technologies to convert organellar PC phenotypes into a simple fluorescence readout for genome-wide screening.

View Article and Find Full Text PDF

In mammalian cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. The maintenance of asymmetric phospholipid distribution has been demonstrated to be required for a wide range of cellular functions including cell division, cell migration, and signal transduction. However, we recently reported that asymmetric phospholipid distribution is disrupted in Drosophila cell membranes, and this unique phospholipid distribution leads to the formation of highly deformable cell membranes.

View Article and Find Full Text PDF

Muscle satellite cells (MuSCs), myogenic stem cells in skeletal muscles, play an essential role in muscle regeneration. After skeletal muscle injury, quiescent MuSCs are activated to enter the cell cycle and proliferate, thereby initiating regeneration; however, the mechanisms that ensure successful MuSC division, including chromosome segregation, remain unclear. Here, we show that PIEZO1, a calcium ion (Ca)-permeable cation channel activated by membrane tension, mediates spontaneous Ca influx to control the regenerative function of MuSCs.

View Article and Find Full Text PDF

Commensal bacteria affect many aspects of host physiology. In this study, we focused on the role of commensal bacteria in the thermoregulatory behavior of Drosophila melanogaster. We demonstrated that the elimination of commensal bacteria caused an increase in the preferred temperature of Drosophila third-instar larvae without affecting the activity of transient receptor potential ankyrin 1 (TRPA1)-expressing thermosensitive neurons.

View Article and Find Full Text PDF

Intracellular temperature affects a wide range of cellular functions in living organisms. However, it remains unclear whether temperature in individual animal cells is controlled autonomously as a response to fluctuations in environmental temperature. Using two distinct intracellular thermometers, we find that the intracellular temperature of steady-state Drosophila S2 cells is maintained in a manner dependent on Δ9-fatty acid desaturase DESAT1, which introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA.

View Article and Find Full Text PDF

Ambient temperature significantly affects developmental timing in animals. The temperature sensitivity of embryogenesis is generally believed to be a consequence of the thermal dependency of cellular metabolism. However, the adaptive molecular mechanisms that respond to variations in temperature remain unclear.

View Article and Find Full Text PDF

Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active.

View Article and Find Full Text PDF
Article Synopsis
  • Lipids are essential for various cellular functions, but understanding their movement and roles in cells has been challenging due to limited imaging methods.
  • The authors developed a new technique for selectively labeling and visualizing phosphatidylcholine in specific organelles using a metabolic marker and bioorthogonal reactions.
  • This approach enabled live-cell imaging that provided direct evidence of how the autophagosomal membrane forms from the endoplasmic reticulum, offering a powerful tool for studying lipid transport in real-time.
View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) play crucial roles in adaptation to cold environments in a wide variety of animals and plants. However, the mechanisms by which PUFAs affect thermoregulatory behaviour remain elusive. Thus, we investigated the roles of PUFAs in thermoregulatory behaviour of Drosophila melanogaster.

View Article and Find Full Text PDF

Fish cell lines are widely used for the studies of developmental biology, virology, biology of aging, and nutrition physiology. However, little is known about their physicochemical properties. Here, we report the phospholipid compositions and mechanical properties of cell membranes derived from freshwater, anadromous and marine fish species.

View Article and Find Full Text PDF

In mammals, lipids are selectively transported to specific sites using multiple classes of lipoproteins. However, in , a single class of lipoproteins, lipophorin, carries more than 95% of the lipids in the hemolymph. Although a unique ability of the insect lipoprotein system for cargo transport has been demonstrated, it remains unclear how this single class of lipoproteins selectively transports lipids.

View Article and Find Full Text PDF

Δ9-Fatty acid desaturase (Δ9-desaturase) is a rate-limiting enzyme of unsaturated fatty acid biosynthesis in animal cells and specifically introduces a cis-double bond at the Δ9-position of acyl-CoA. Since the chemical structure of fatty acids determines the physicochemical properties of cellular membrane and modulates a broad range of cellular functions, double bond introduction into a fatty acid by Δ9-desaturase should be specifically carried out. Reported crystal structures of stearoyl-CoA desaturase (SCD)1, one of the most studied Δ9-desaturases, have revealed the mechanism underlying the determination of substrate preference, as well as the position (Δ9) and conformation (cis) of double bond introduction.

View Article and Find Full Text PDF

Myotube formation by fusion of myoblasts and subsequent elongation of the syncytia is essential for skeletal muscle formation. However, molecules that regulate myotube formation remain elusive. Here we identify PIEZO1, a mechanosensitive Ca channel, as a key regulator of myotube formation.

View Article and Find Full Text PDF

The quality and quantity of high-density lipoprotein (HDL) in blood plasma are important for preventing coronary artery disease. ATP-binding cassette protein A1 (ABCA1) and apolipoprotein A-I (apoA-I) play essential roles in nascent HDL formation, but controversy persists regarding the mechanism by which nascent HDL is generated. In the "direct loading model", apoA-I acquires lipids directly from ABCA1 while it is bound to the transporter.

View Article and Find Full Text PDF

It is commonly observed that freshwater fish contain lower amounts of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), than marine fish species. In this study, we performed a detailed comparative analysis of phospholipids (PLs) and triacylglycerols (TAGs) from Gymnogobius isaza, a freshwater goby endemic to Lake Biwa inhabiting the lake bottom, and Gymnogobius urotaenia, a related goby that inhabits the shore of Lake Biwa. We found that tissues from G.

View Article and Find Full Text PDF

The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids.

View Article and Find Full Text PDF

We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM.

View Article and Find Full Text PDF

Ceramide phosphoethanolamine (CPE), a sphingomyelin analog, is a major sphingolipid in invertebrates and parasites, whereas only trace amounts are present in mammalian cells. In this study, mushroom-derived proteins of the aegerolysin family—pleurotolysin A2 (PlyA2; K(D) = 12 nM), ostreolysin (Oly; K(D) = 1.3 nM), and erylysin A (EryA; K(D) = 1.

View Article and Find Full Text PDF

ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells.

View Article and Find Full Text PDF

ATP-binding cassette protein A1 (ABCA1) plays a key role in eliminating excess cholesterol from peripheral cells by generating nascent high-density lipoprotein (HDL). However, it remains unclear whether both phospholipids and cholesterol are directly loaded onto apolipoprotein A-I (apoA-I) by ABCA1. To identify the amino acid residues of ABCA1 involved in substrate recognition and transport, we applied arginine scan mutagenesis to residues L821-E843 of human ABCA1 and predicted the environment to which each residue is exposed.

View Article and Find Full Text PDF

ABCA1 mediates the efflux of cholesterol and phospholipids into apoA-I to form HDL, which is important in the prevention of atherosclerosis. To develop a novel method for the evaluation of HDL formation, we prepared an apoA-I-POLARIC by labeling the specific residue of an apoA-I variant with a hydrophobicity-sensitive fluorescence probe that detects the environmental change around apoA-I during HDL formation. apoA-I-POLARIC possesses the intact ABCA1-dependent HDL formation activity and shows 4.

View Article and Find Full Text PDF

The N-terminal 1-83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46-59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1-43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46-59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.

View Article and Find Full Text PDF