Publications by authors named "Kohji Mizoguchi"

In a dissipative quantum system, we report the dynamic mode decomposition (DMD) analysis of damped oscillation signals. We used a reflection-type pump-probe method to observe time-domain signals, including the coupled modes of long-lived longitudinal optical phonons and quickly damped plasmons (LOPC) at various pump powers. The Fourier transformed spectra of the observed damped oscillation signals show broad and asymmetric modes, making it difficult to evaluate their frequencies and damping rates.

View Article and Find Full Text PDF

Measurements of relaxation processes are essential in many fields, including nonlinear optics. Relaxation processes provide many insights into atomic/molecular structures and the kinetics and mechanisms of chemical reactions. For the analysis of these processes, the extraction of modes that are specific to the phenomenon of interest (normal modes) is unavoidable.

View Article and Find Full Text PDF

Dirac electrons in topological insulators (TIs) provide one possible avenue to achieve control of photocurrents and spin currents without the need to apply external fields by utilizing characteristic spin-momentum locking. However, for TI crystals with electrodes it is actually difficult to characterize the net flow of spin-polarized photocurrents because of the coexistence of surface carriers and bulk carriers generated by optical excitations. We demonstrate here that the net flow directions of spin-polarized photocurrents in TI polycrystalline thin films without electrodes can be precisely and intentionally controlled by the polarization of the excitation pulse alone, which is characterized by performing time-domain terahertz (THz) wave measurements and time-resolved magneto-optical Kerr rotation measurements that are non-contact methods.

View Article and Find Full Text PDF

A high efficiency method for the generation of correlated photon pairs accompanied by reliable means to characterize the efficiency of that process is needed in the study of entangled states, which have important potential applications in quantum information and quantum communication. In this study, we report the first characterization of the efficiency of generation of correlated photon pairs emitted from a CuCl single crystal using the biexciton-resonance hyper-parametric scattering (RHPS) method which is the highly efficient method of generation of correlated photon pairs. In order to characterize the generation efficiency and signal-to-noise ratio of correlated photon pairs using this method, we investigated the pump power dependence on the photon counting rate and coincidence counting rate under resonant excitation.

View Article and Find Full Text PDF

We have investigated the dynamical properties of the coherent anharmonic phonons generated in Bi under high density excitation. The time-resolved reflectivity in the intensely photoexcited Bi film is modulated by the coherent A(1g) phonon oscillation with a time-dependent oscillation period. As the pump power density is increased, the line shape of the A(1g) mode in the Fourier transformed spectra becomes asymmetric, and the redshift of the phonon frequency is observed.

View Article and Find Full Text PDF