Publications by authors named "Kohei Tsumoto"

[Introduction] Emicizumab, a bispecific antibody mimicking activated factor VIII (FVIII), is increasingly used in prophylaxis against bleeding in hemophilia A. Human factor-based chromogenic substrate assay (hCSA) shows concentration-dependency between emicizumab and reported FVIII activity. However, the assay measurement settings have not been optimized for emicizumab, and the reported FVIII activity cannot be directly referred as surrogate FVIII activity.

View Article and Find Full Text PDF

Objective: Pendrin is a transmembrane protein encoded by the SLC26A4 gene that functions in maintaining ion concentrations in the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Variants in the SLC26A4 gene are responsible for sensorineural hearing loss. Although pendrin localizes to the plasma membrane, we previously identified that 8 missense allele products of SLC26A4 were retained in the intracellular region and lost their anion exchange function.

View Article and Find Full Text PDF

We have recently developed a mouse monoclonal antibody (12-10H) binding to the head domain region in rat P2X4 receptor (rP2X4R, which is crucial for the pathogenesis of neuropathic pain) expressed on the cell with the highest binding affinity (K = 20 nM). However, the 12-10H antibody failed to detect endogenously expressed P2X4Rs in microglia isolated from the spinal cord of rats whose spinal nerves were injured. Then, we prepared R5 mutant, in which five arginine residues were introduced into variable regions except for the "hot spot" in the 12-10H antibody to increase electrostatic interactions with the head domain, an anionic region, in rP2X4R.

View Article and Find Full Text PDF

Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways.

View Article and Find Full Text PDF

Grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS) with optical bound/free (B/F) separation technique was developed by employing a highly directional fluorescence with polarization of surface plasmon-coupled emission (SPCE) to realize highly sensitive immunoassay regardless of the ligand affinity. A highly sensitive immunoassay system with GC-SPFS was constructed using a plastic sensor chip reproducibly fabricated in-house by nanoimprinting and applied to the quantitative detection of an anti-lysozyme single-domain antibody (sdAb), to compare conventional washing B/F separation with optical B/F separation. Differences in the affinity of the anti-lysozyme sdAb, induced by artificial mutation of only one amino acid residue in the variable domain were attributed to higher sensitivity than that of the conventional Biacore surface plasmon resonance (SPR) system.

View Article and Find Full Text PDF

Background: The ever-increasing number of people living with Alzheimer's disease urges to develop more effective therapies. Despite considerable success, anti-Alzheimer immunotherapy still faces the challenge of intracerebral and intracellular delivery. This work introduces in situ production of anti-amyloid beta (Aβ) antibody after intracerebral injection of PEG-PAsp(DET)/mRNA polyplexes as a novel immunotherapy approach and a safer alternative compared to high systemic antibodies doses or administration of adenovirus encoding anti- Aβ antibodies.

View Article and Find Full Text PDF

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease.

View Article and Find Full Text PDF
Article Synopsis
  • The SLC26A4 gene produces the pendrin protein, essential for balancing ion concentrations in the inner ear, and mutations in this gene lead to sensorineuronal hearing loss.* -
  • This study investigated ten specific mutations of pendrin associated with hearing loss, focusing on where these mutated proteins are located within cells and their ability to function as anion exchangers.* -
  • It was found that some mutants remain in the cytoplasm, but treatment with salicylate helped some of these proteins move to the plasma membrane, potentially opening new avenues for treating hearing loss linked to these mutations.*
View Article and Find Full Text PDF

Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Arginine suppresses the aggregation of proteins. However, little is known about its mechanism. Here we have used HsNDK (Halobacterium salinarum nucleoside diphosphate kinase) to examine the solvent property of arginine.

View Article and Find Full Text PDF

Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding.

View Article and Find Full Text PDF

Binding of a helicene, 5,8-bis(aminomethyl)-1,12-dimethylbenzo[c]phenanthrene, to calf thymus DNA was studied using UV, CD, and fluorescence spectroscopy as well as calorimetry. The enantiomeric helicenes strongly bound to the double strand DNA possessing the right-handed helical structure. In addition, chiral recognition was observed in the binding, where the (P)-helicene with the right-handed helicity formed more stable complex than the (M)-helicene with the left-handed helicity.

View Article and Find Full Text PDF

Background: The bacterial superantigen staphylococcal enterotoxin A (SEA) is an extremely potent activator of T lymphocytes when presented on major histocompatibility complex (MHC) class II molecules. To develop a tumor-specific superantigen for cancer therapy, we constructed a recombinant fusion protein of SEA and the single-chain variable fragment (scFv) of the FU-MK-1 antibody, which recognizes a glycoprotein antigen (termed MK-1 antigen) present on most carcinomas.

Materials And Methods: We employed recombinant DNA techniques to fuse recombinant mutant SEA to an scFv antibody derived from FU-MK-1 and the resulting fusion protein (SEA/FUscFv) was produced by a bacterial expression system, purified with a metal-affinity column, and characterized for its MK-1-binding specificity and its antitumor activity.

View Article and Find Full Text PDF