Publications by authors named "Kohei Soga"

In this study, we developed a rigid-scope system that can perform hyperspectral imaging (HSI) between visible and 1600 nm wavelengths using a supercontinuum light source and an acousto-optic tunable filter to emit specific wavelengths. The system optical performance was verified, and the classification ability was investigated. Consequently, it was demonstrated that HSI (490-1600 nm) could be performed.

View Article and Find Full Text PDF

Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored.

View Article and Find Full Text PDF

Luminescence thermometry is a non-contact method that can measure surface temperatures and the temperature of the area where the fluorescent probe is located, allowing temperature distribution visualizations with a camera. Ratiometric fluorescence thermometry, which uses the intensity ratio of fluorescence peaks at two wavelengths with different fluorescence intensity dependencies, is an excellent method for visualizing temperature distributions independent of the fluorophore spatial concentration, excitation light intensity and absolute fluorescence intensity. Herein, Nd/Yb/Er-doped YO nanomaterials with a diameter of 200 nm were prepared as phosphors for temperature distribution measurement of fluids at different temperatures.

View Article and Find Full Text PDF

Fatty acids play various physiological roles owing to their diverse structural characteristics, such as hydrocarbon chain length (HCL) and degree of saturation (DS). Although the distribution of fatty acids in biological tissues is associated with lipid metabolism, in situ imaging tools are still lacking for HCL and DS. Here, we introduce a framework of near-infrared (1000-1400 nm) hyperspectral label-free imaging with machine learning analysis of the fatty acid HCL and DS distribution in the liver at each pixel, in addition to the previously reported total lipid content.

View Article and Find Full Text PDF

Micelles have been extensively used in biomedicine as potential carriers of hydrophobic fluorescent dyes. Their small diameters can potentially enable them to evade recognition by the reticuloendothelial system, resulting in prolonged circulation. Nevertheless, their lack of stability in physiological environments limits the imaging utility of micelles.

View Article and Find Full Text PDF

Significance: Determining the extent of gastric cancer (GC) is necessary for evaluating the gastrectomy margin for GC. Additionally, determining the extent of the GC that is not exposed to the mucosal surface remains difficult. However, near-infrared (NIR) can penetrate mucosal tissues highly efficiently.

View Article and Find Full Text PDF

Polymeric nanoparticles with a hydrophobic core are valuable biomedical materials with potential applications in in vivo imaging and drug delivery. These materials are effective at protecting vulnerable molecules, enabling them to serve their functions in hydrophilic physiological environments; however, strategies that allow the chemical composition and molecular weight of polymers to be tuned, forming nanoparticles to control the functional molecules, are lacking. In this article, we review strategies for designing core-shell nanoparticles that enable the effective and stable encapsulation of functional molecules for biomedical applications.

View Article and Find Full Text PDF

We developed a small MRI/NIR-II probe to target HER2 (tetanucleotide) breast cancer cells. The probe is composed of PLGA--PEG micelles encapsulated NIR-II, and Gd-DOTA is conjugated at the border of PLGA/PEG. Herceptin was then conjugated to carboxyl residues of PLGA--PEG chains.

View Article and Find Full Text PDF

Multimodal imaging is attractive in biomedical research because it can provide multidimensional information about objects that individual techniques cannot accomplish. In particular, combining over one-thousand-nanometer near-infrared (OTN-NIR) fluorescence and magnetic resonance (MR) imaging is promising for detecting lesions with high sensitivity and structural information. Herein, we describe the development of a bimodal OTN-NIR/MRI probe from gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) conjugated poly(lactic--glycolic acid)--poly(ethylene glycol) copolymer (PLGA--PEG) micelle encapsulated IR-1061 at two different locations.

View Article and Find Full Text PDF

Background: Most orthodontic cases consist of varying degrees of crowding. To manage crowded dentitions, nickel-titanium archwires with various ligation methods are often used.

Objective: We aimed to investigate the effect of different ligation methods with respect to force and moment and suggest the efficient ligation method for treating rotation and displacement simultaneously.

View Article and Find Full Text PDF

Polystyrene-based nanoparticles (PSt NPs) prepared by emulsion polymerization are promising organic matrices for encapsulating over-thousand-nanometer near-infrared (OTN-NIR) fluorescent dyes, such as thiopyrilium IR-1061, for OTN-NIR dynamic live imaging. Herein, we propose an effective approach to obtain highly emissive OTN-NIR fluorescent PSt NPs (OTN-PSt NPs) in which the polarity of the PSt NPs was adjusted by changing the monomer ratio (styrene to acrylic acid) in the PSt NPs and the dimethyl sulfoxide concentration in the IR-1061 loading process. Moreover, OTN-PSt NPs covalently modified with poly(ethylene glycol) (PEG) (OTN-PSt-PEG NPs) showed high dispersion stability under physiological conditions and minimal cytotoxicity.

View Article and Find Full Text PDF

Over-thousand-nanometer (OTN) near-infrared (NIR) fluorophores are useful for biological deep imaging because of the reduced absorption and scattering of OTN-NIR light in biological tissues. IR-1061, an OTN-NIR fluorescent dye, has a hydrophobic and cationic backbone in its molecular structure, and a non-polar counter ion, BF . Because of its hydrophobicity, IR-1061 needs to be encapsulated in a hydrophobic microenvironment, such as a hydrophobic core of polymer micelles, shielded with a hydrophilic shell for bioimaging applications.

View Article and Find Full Text PDF

Particulate air pollution, containing nanoparticles, enhances the risk of pediatric allergic diseases that is potentially associated with disruption of neonatal immune system. Previous studies have revealed that maternal exposure to carbon black nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns. Interestingly, the CB-NP-induced immune profiles were observed to be different depending on the gestational period of exposure.

View Article and Find Full Text PDF

Polymeric micellar nanoparticles (PNPs) composed of an amphiphilic block copolymer formed from hydrophilic and hydrophobic blocks and over-thousand-nanometer (OTN) near-infrared (NIR) fluorescent dye are promising fluorophores for the dynamic imaging of deep tissue. In this study, we examined the effect of the ratio of hydrophilic/hydrophobic blocks of a block copolymer, poly(ethylene glycol) (PEG)-b-poly(lactide-co-glycolide) (PLGA), on the properties of OTN-PNPs encapsulating IR-1061. OTN-PNPs with a higher molecular weight of PLGA cores showed higher emission and stabilities under physiological conditions.

View Article and Find Full Text PDF

Organic molecules that emit near-infrared (NIR) fluorescence at wavelengths above 1000 nm, also known as the second NIR (NIR-II) biological window, are expected to be applied to optical imaging of deep tissues. The study of molecular states of NIR-II dye and its optical properties are important to yield well-controlled fluorescent probes; however, no such study has been conducted yet. Among the two major absorption peaks of the NIR-II dye, IR-1061, the ratio of the shorter wavelength (900 nm) to the longer one (1060 nm) increased with an increase in the dye concentration in tetrahydrofuran, suggesting that the 900 nm peak is due to the dimer formation of IR-1061.

View Article and Find Full Text PDF

The refraction of fluorescence from the inside of a sample at the surface results in fluctuations in fluorescence computed tomography (CT). We evaluated the influence of the difference in refractive index (RI) between the sample body and the surroundings on fluorescence CT results. The brightest fluorescent point is away from the correct point on the tomograms owing to the refraction.

View Article and Find Full Text PDF

Multimodal imaging can provide multidimensional information for understanding concealed microstructures or bioprocesses in biological objects. The combination of over-1000 nm near-infrared (OTN-NIR) fluorescence imaging and magnetic resonance (MR) imaging is promising in providing high sensitivity and structural information of lesions. This combination can be facilitated by the development of an imaging probe.

View Article and Find Full Text PDF

We designed a biodegradable hybrid nanostructure for near-infrared (NIR)-induced photodynamic therapy (PDT) using an ultrasmall upconversion (UC) phosphor (β-NaYF:Yb, Er nanoparticle: NPs) and a hydrocarbonized rose bengal (CRB) dye, a hydrophobized rose bengal (RB) derivative. The UC-NPs were encapsulated along with CRB in the hydrophobic core of the micelle composed of poly(ethylene glycol) (PEG)--poly(ε-caprolactone) (PCL). The UC-NPs were well shielded from the aqueous environment, owing to the encapsulation in the hydrophobic PCL core, to efficiently emit green UC luminescence by avoiding the quenching by the hydroxyl groups.

View Article and Find Full Text PDF

Near infrared (NIR) light offers high transparency in biological tissue. Recent advances in NIR fluorophores including organic dyes and lanthanide-doped inorganic nanoparticles have realized the effective use of the NIR optical window for in vivo bioimaging and photodynamic therapy. The narrow energy level intervals used for electronic transition that involves NIR light, however, give rise to a need for guidelines for reducing heat emission in luminescence systems, especially in the development of organic/inorganic hybrid structures.

View Article and Find Full Text PDF

Polymeric micellar nanoparticles (PNPs) encapsulating over-thousand-nanometer (OTN) near-infrared (NIR) fluorescent dye molecules in block polymers having hydrophobic and hydrophilic chains are promising agents for the dynamic imaging of deep tissue. To achieve OTN-NIR fluorescent PNPs (OTN-PNPs) having high brightness, it is crucial to increase the affinity between the core polymer and dye molecules by matching their polarities; thus, criteria and methods to evaluate the affinity are required. In this study, we used the Hansen solubility parameter (HSP), including the polarity term, to evaluate the affinity between the two substances.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the link between intestinal inflammation and osteoporosis, focusing on a specific food-allergic model using mice that express OVA-specific T-cell receptors.* -
  • Findings show that feeding these mice an egg-white diet leads to bone loss and increased pathogenic T cells in both mesenteric lymph nodes (MLNs) and bone marrow.* -
  • The research highlights that IL-4 production from these immune cells plays a crucial role in promoting bone damage, with anti-IL-4 treatment showing potential to mitigate bone loss during initial inflammation.*
View Article and Find Full Text PDF

In this study, a laparoscopic imaging device and a light source able to select wavelengths by bandpass filters were developed to perform multispectral imaging (MSI) using over 1000 nm near-infrared (OTN-NIR) on regions under a laparoscope. Subsequently, MSI (wavelengths: 1000-1400 nm) was performed using the built device on nine live mice before and after tumor implantation. The normal and tumor pixels captured within the mice were used as teaching data sets, and the tumor-implanted mice data were classified using a neural network applied following a leave-one-out cross-validation procedure.

View Article and Find Full Text PDF

Rare-earth-doped nanoparticles (NPs), such as NaGdF nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF:Yb, Er NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging.

View Article and Find Full Text PDF