Publications by authors named "Kohei Kitazato"

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe to Fe and dehydration developed.

View Article and Find Full Text PDF

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples.

View Article and Find Full Text PDF

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water).

View Article and Find Full Text PDF

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation.

View Article and Find Full Text PDF
Article Synopsis
  • The Hayabusa2 spacecraft successfully returned to Earth from the asteroid 162173 Ryugu on December 6, 2020, and samples were recovered the next day.
  • The extracted gas from the sample container contained helium and neon and had unique extraterrestrial ratios, indicating some contamination from Earth’s atmosphere.
  • This mission marks the first successful return of gas species from a near-Earth asteroid, and discussions are held regarding the fragmentation of Ryugu grains in relation to the gas composition.
View Article and Find Full Text PDF

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites.

View Article and Find Full Text PDF

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.

View Article and Find Full Text PDF

Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body.

View Article and Find Full Text PDF

Carbonaceous (C-type) asteroids are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites and are essential for understanding planetary formation processes.

View Article and Find Full Text PDF

It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust.

View Article and Find Full Text PDF

Puzzlingly, the parent bodies of ordinary chondrites (the most abundant type of meteorites) do not seem to be abundant among asteroids. One possible explanation is that surfaces of the parent bodies become optically altered, to become the S-type asteroids which are abundant in the main asteroid belt. The process is called 'space weathering'-it makes the visible and near-infrared reflectance spectrum of a body darker and redder.

View Article and Find Full Text PDF