Publications by authors named "Kohei Ishii"

Severe cardiac failure patients require a total artificial heart (TAH) to save life. To realize a TAH that can fit a body of small stature and has high performance, high durability, good anatomical fitting, good blood compatibility, and physiological control, we have been developing the helical flow TAH (HFTAH) with two helical flow pumps with hydrodynamic levitation impeller. Animal experiments of the HFTAH were conducted to perform in vivo studies.

View Article and Find Full Text PDF

The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed.

View Article and Find Full Text PDF

The helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed.

View Article and Find Full Text PDF

Development have been achieved of a new blood pump for next generation Percutaneous Cardio-Pulmonary Support (PCPS) system and a novel surface coating method for silicone membrane hollow fiber by physical adsorption using a copolymer composed of a 2-Methacryloyloxyethyl phosphorylcholine (MPC) unit and a hydrophobic unit. The new blood pump, named the Troidal Convolution Pump (TCP), is based on the principle of a cascade pump and perfused 5 L/min and 350 mmHg at 2450 rpm. The novel copolymer composed of 30% MPC unit and 3-(methacryloyloxy) propyltris (trimethylsiloxy) silane (MPTSSi) unit (PMMSi30) was the most suitable molecular design on a silicone surface.

View Article and Find Full Text PDF

The helical flow pump (HFP) is newly developed blood pomp for total artificial heart (TAH). HFP can work with lower rotational speed than axial and centrifugal blood pump. It can be seen reasonable feature to generate pulsatile flow because high response performance can be realized.

View Article and Find Full Text PDF

To realize a total artificial heart (TAH) with high performance, high durability, good anatomical fitting, and good blood compatibility, the helical flow TAH (HFTAH) has been developed with two helical flow pumps having hydrodynamic levitation impeller. The HFTAH was implanted in goats to investigate its anatomical fitting, blood compatibility, mechanical stability, control stability, and so on. The size of the HFTAH was designed to be 80 mm in diameter and 84 mm wide.

View Article and Find Full Text PDF

The present control method used in our helical flow total artificial heart (HFTAH) would only need four parameters. Nowadays, gauge pressure sensors are being used to obtain the pressure needed for control parameters. Nevertheless, there are also many following problems such as calibration, maintenance, offset drift and infection due to the skin-penetrative lines for the usage of gauge pressure sensor.

View Article and Find Full Text PDF

Capsicum spp. are widely cultivated for use as vegetables and spices. The Kihara Institute for Biological Research, Yokohama City University, Japan, has stocks of approximately 800 lines of Capsicum spp.

View Article and Find Full Text PDF

The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed.

View Article and Find Full Text PDF

It is desirable to obtain the maximum assist without suction in ventricular assist devices (VADs). However, high driving power of a VAD may cause severe ventricle suction that can induce arrhythmia, hemolysis, and pump damage. In this report, an appropriate VAD driving level that maximizes the assist effect without severe systolic suction was explored.

View Article and Find Full Text PDF

Animal experiments using a total artificial heart in a goat are not easy to perform. The fourth model of the undulation pump total artificial heart (UPTAH4), which was designed to perform a long-term physiological experiment including pulsatile and nonpulsatile TAH operations with a conductance- and arterial pressure-based control method named 1/R control, was implanted in 31 goats weighing 38.5 to 60.

View Article and Find Full Text PDF

The undulation pump ventricular assist device (UPVAD) is a small implantable ventricular assist device using an undulation pump. The UPVAD can produce pulsatile flow by changing the motor rotation speed of the UPVAD. Because the undulation pump is a volume displacement type pump, the inflow sucking occurs easily.

View Article and Find Full Text PDF

For large-scale phosphoproteome analysis based on mass spectrometry, a fully automated phosphopeptide purification system is essential to obtain reproducible results. An automated system involving pre-cleaning of a sample with a polymer-based reversed-phase column, phosphopeptide purification with a titania column and analysis of the phosphopeptide fraction with a reversed-phase column was developed, and then the analytical conditions for a complex peptide mixture were optimized. A lower flow rate for application of samples to the titania column was essential to obtain high recoveries of phosphopeptides from complex protein digests.

View Article and Find Full Text PDF

The nuclear matrix has classically been assumed to be a solid structure coherently aligning nuclear components, but its real nature remains obscure. We separated the proteins in a ribonucleoprotein-containing nuclear matrix fraction of HeLa cells by reversed-phase HPLC followed by SDS-PAGE, and identified 83 proteins through peptide mass fingerprint (PMF) analysis. Many nucleolar proteins, classical nuclear matrix proteins, RNA binding proteins, cytoskeletal proteins and five uncharacterized proteins were identified in this fraction.

View Article and Find Full Text PDF

The LEM (LAP2beta, Emerin, and MAN1) proteins are essential for nuclear membrane targeting to chromatin via an association with barrier-to-autointegration factor (BAF). Herein, we focused on the mitotic phosphorylation of MAN1 and its biological role. MAN1 was phosphorylated in a cell cycle-dependent manner in the Xenopus egg cell-free system, and the mitotic phosphorylation at the N-terminal region of MAN1 suppressed the binding of MAN1 to BAF.

View Article and Find Full Text PDF

To find novel proteins predicted to participate in the formation of nuclear bodies, nuclear speckles, and nuclear macro-protein complexes, we applied proteome analysis to a HeLa cell nuclear matrix fraction. Proteins in the fraction were separated by SDS-PAGE, digested with trypsin, and analyzed by nanoflow liquid chromatography-iontrap-tandem mass spectrometry. Three hundred and thirty three proteins including 39 novel ones were identified.

View Article and Find Full Text PDF

We describe here a method for analyzing a rat liver nuclear-insoluble protein fraction to determine candidate proteins participating in nuclear architecture formation. Rat liver nuclei are purified by sucrose density gradient centrifugation. The purified nuclei are treated with DNase and RNase and then washed with high salt and detergent solutions.

View Article and Find Full Text PDF

The mechanism underlying targeting of the nuclear membrane to chromatin at the end of mitosis was studied using an in vitro cell-free system comprising Xenopus egg membrane and cytosol fractions, and sperm chromatin. The mitotic phase membrane, which was separated from a mitotic phase extract of Xenopus eggs and could not bind to chromatin, became able to bind to chromatin on pretreatment with a synthetic phase cytosol fraction of Xenopus eggs. When the cytosol fraction was depleted of protein phosphatase 1 (PP1) with anti-Xenopus PP1gamma1 antibodies, this ability was lost.

View Article and Find Full Text PDF