The outbreak of emerging infectious diseases poses significant challenges to global public health. Accurate early forecasting is crucial for effective resource allocation and emergency response planning. This study aims to develop a comprehensive predictive model for emerging infectious diseases, integrating the blending framework, transfer learning, incremental learning, and the biological feature Rt to increase prediction accuracy and practicality.
View Article and Find Full Text PDFIn gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al.
View Article and Find Full Text PDFA random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification.
View Article and Find Full Text PDF