A Ku-band (12-18 GHz) multichannel Doppler reflectometer (DR) has been developed in the GAMMA 10/potential control and divertor simulating experiment (PDX) tandem mirror device to improve the applicability of DR measurement for simultaneous monitoring of velocity of electron density turbulence at different locations. Our previous single-channel DR circuit has been replaced by the multichannel microwave system using a nonlinear transmission line based comb generator with heterodyne technique. The multichannel DR system has been installed in the central cell of GAMMA 10/PDX.
View Article and Find Full Text PDFDoppler-backscattering (DBS) has been used in several fusion plasma devices because it can measure the perpendicular velocity of electron density perturbation v, the radial electric field E, and the perpendicular wavenumber spectrum S(k) with high wavenumber and spatial resolution. In particular, recently constructed frequency comb DBS systems enable observation of turbulent phenomena at multiple observation points in the radial direction. A dual-comb microwave DBS system has been developed for the large helical device plasma measurement.
View Article and Find Full Text PDFIn the GAMMA 10/PDX tandem mirror, plasma with strong ion-temperature anisotropy is produced by using the ion cyclotron range of frequency waves. This anisotropy of ion temperature causes several Alfvén-Ion-Cyclotron (AIC) waves to spontaneously excite in the frequency range just below the ion cyclotron frequency. In addition, difference-frequency (DF) waves are excited in the radial inner region of the plasma by wave-wave coupling among the AIC waves.
View Article and Find Full Text PDFThe multipass Thomson scattering (MPTS) technique is one of the most useful methods for measuring low-electron-density plasmas. The MPTS system increases Thomson scattering (TS) signal intensities by integrating all multipass (MP) signals and improving the TS time resolution by analyzing each pass signal. The fully coaxial MPTS system developed in GAMMA 10/potential-control and diverter-simulator experiments has a polarization-based configuration with image-relaying optics.
View Article and Find Full Text PDFThe multi-pass Thomson scattering (MPTS) system is a useful technique for increasing the Thomson scattering (TS) signal intensities and improving the TS diagnostic time resolution. The MPTS system developed in GAMMA 10/PDX has a polarization-based configuration with an image relaying system. The MPTS system has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy and the megahertz sampling time resolution.
View Article and Find Full Text PDFA two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile.
View Article and Find Full Text PDFHigh time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy.
View Article and Find Full Text PDFIn conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel.
View Article and Find Full Text PDFWe have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system.
View Article and Find Full Text PDFA new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized.
View Article and Find Full Text PDFA multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components.
View Article and Find Full Text PDFWe propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments.
View Article and Find Full Text PDFIn the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system.
View Article and Find Full Text PDFA novel configuration of the multi-pass Thomson scattering (TS) system is proposed to improve the time resolution and accuracy of electron temperature measurements by use of a polarization control technique. This configuration can realize a perfect coaxial multi-passing at each pass, and the number of round trips is not limited by the optical configuration. To confirm the feasibility of the new method, we installed this system in the GAMMA 10 plasma system.
View Article and Find Full Text PDFRev Sci Instrum
October 2012
A new interferometer is installed on the west anchor cell of the GAMMA 10 tandem mirror. In GAMMA 10, we have used a heterodyne-type interferometer with a 70-GHz IMPATT oscillator and a 150-MHz oscillator for frequency modulation. The new interferometer consists of a 17.
View Article and Find Full Text PDFOff-axis electron-cyclotron heating in an axisymmetric barrier mirror produces a cylindrical layer with energetic electrons, which flow through the central cell and into the end region. The layer, producing a localized bumped ambipolar potential Phi(C), forms a strong shear of radial electric fields E(r) and peaked vorticity with the direction reversal of E(r)xB sheared flow near the Phi(C) peak. Intermittent vortexlike turbulent structures near the layer are suppressed in the central cell by this actively produced transverse energy-transport barrier; this results in T(e) and T(i) rises surrounded by the layer.
View Article and Find Full Text PDFVortexlike turbulent structures in hot-ion mode plasmas with several keV are observed in the case with a radially produced weak shear of electric fields E(r). However, a strong E(r) shear formation due to a high ion-confining potential phi(c) production clears up these vortices together with plasma-confinement improvement and disappearance of both drift-wave and turbulencelike Fourier spectral signals. These findings are based on three-time progress in phi(c) in comparison to phi(c) attained 1992-2002.
View Article and Find Full Text PDFOn the basis of a new theory of semiconductor X-ray detector response, a new type of multilayer semiconductor detector was designed and developed for convenient energy analyses of intense incident X-ray flux in a cumulative-current mode. Another anticipated useful property of the developed detector is a drastic improvement in high-energy X-ray response ranging over several hundred eV. The formula for the quantum efficiency of multilayer semiconductor detectors and its physical interpretations are proposed and have been successfully verified by synchrotron radiation experiments at the Photon Factory.
View Article and Find Full Text PDFJ Synchrotron Radiat
May 1998
The extension of a new theory on the X-ray energy response of semiconductor detectors is carried out to characterize the X-ray response of a multichannel semiconductor detector fabricated on one silicon wafer. Recently, these multichannel detectors have been widely utilized for position-sensitive observations in various research fields, including synchrotron radiation research and fusion-plasma investigations. This article represents the verification of the physics essentials of a proposed theory on the X-ray response of semiconductor detectors.
View Article and Find Full Text PDFThe main operations from 1979 to 2000 in the GAMMA 10 tandem-mirror, characterized in terms of the high-potential mode having kV-order plasma-confining potentials and the hot-ion mode yielding fusion neutrons with 10-20 keV bulk-ion temperatures, are summarized and generalized as a result of scalings of the formation and the effects of the potentials. The wide validity of potential-formation physics from Cohen's theory and the validity of the generalized Pastukhov's theory for the effects of thermal-barrier potentials on electron confinement are verified and consolidated through electron-energy balance.
View Article and Find Full Text PDF