The present review will introduce the basic concepts of silk-based electronics/optoelectronics including the latest technological advances on the use of silk fibroin in combination with other functional components, with an emphasis on improving the performance of next-generation silk-based materials. It also highlights the patterning of silk fibroin to produce micro/nano-scale features, as well as the functionalization of silk fibroin to impart antimicrobial (i.e.
View Article and Find Full Text PDFTetrahedrite (CuSbS) is a highly promising environmentally friendly material for energy conversion applications but its synthesis generally requires several days of heating at high temperature conditions. To fabricate tetrahedrite in a more rapid way and under milder conditions, solvothermal synthesis has been recently explored. However, a common problem faced when using this technique is the formation of significant amounts of other ternary Cu-Sb-S phases along with the desired tetrahedrite phase.
View Article and Find Full Text PDFHybrid structures of nanomaterials (e.g. tubes, scrolls, threads, cages) and biomaterials (e.
View Article and Find Full Text PDFHydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production.
View Article and Find Full Text PDFWith the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented.
View Article and Find Full Text PDFWith their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2015
Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications.
View Article and Find Full Text PDFHerein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu(+)-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au(3+) at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution.
View Article and Find Full Text PDFHere, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance.
View Article and Find Full Text PDFSilk fibroin, a natural multi-domain protein, has attracted great attention due to its superior mechanical properties such as ultra-high strength and stretchability, biocompatibility, as well as its versatile biodegradability and processability. It is mainly composed of β-sheet crystallites and amorphous domains. Although its strength is well known to be controlled by the dissociation of protein chains from β-sheet crystallites, the way that water as the solvent affects its strength and the reason that its theoretically predicted strength is several times higher than experimental measurement remain unclear.
View Article and Find Full Text PDFSilkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties.
View Article and Find Full Text PDFThe fate of xenobiotics in living organisms is determined by their in vivo absorption, distribution, metabolism and excretion. A convenient and scalable animal model of these biological processes is thus highly beneficial in understanding the effects of xenobiotics. Here we present a silkworm model to investigate the molecular properties-directed absorption, distribution and excretion of fluorescent compounds as model xenobiotics through introducing the compounds into the silkworm's diet and monitoring the resulting color and fluorescence in the silkworm's body.
View Article and Find Full Text PDF