Multiphase flow in subsurface formations is the essence of aquifer remediation and petroleum recovery processes, where the phase mobilities are greatly influenced by phase topologies. Yet, flow models rarely utilize quantified phase topologies due to the limited availability of such data. Here, we conducted cutting-edge experiments using a micromodel together with a state-of-the-art automated imaging system to capture images with high temporal and areal resolution to characterize the phase topologies for three-phase displacements.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2017
Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2016
The relative immobility of foam in porous media suppresses the formation of fingers during oil displacement leading to a more stable displacement which is desired in various processes such as Enhanced Oil Recovery (EOR) or soil remediation practices. Various parameters may influence the efficiency of foam-assisted oil displacement such as properties of oil, the permeability and heterogeneity of the porous medium and physical and chemical characteristics of foam. In the present work, we have conducted a comprehensive series of experiments using customised Hele-Shaw cells filled with either water or oil to describe the effects of foam quality, permeability of the cell as well as the injection rate on the apparent viscosity of foam which is required to investigate foam displacement.
View Article and Find Full Text PDF