Despite progress in designing protein-binding proteins, the shape matching of designs to targets is lower than in many native protein complexes, and design efforts have failed for the tumor necrosis factor receptor 1 (TNFR1) and other protein targets with relatively flat and polar surfaces. We hypothesized that free diffusion from random noise could generate shape-matched binders for challenging targets and tested this approach on TNFR1. We obtain designs with low picomolar affinity whose specificity can be completely switched to other family members using partial diffusion.
View Article and Find Full Text PDFAlthough deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here, we describe a deep learning-based protein sequence design method, ProteinMPNN, that has outstanding performance in both in silico and experimental tests. On native protein backbones, ProteinMPNN has a sequence recovery of 52.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
The protein design problem is to identify an amino acid sequence that folds to a desired structure. Given Anfinsen's thermodynamic hypothesis of folding, this can be recast as finding an amino acid sequence for which the desired structure is the lowest energy state. As this calculation involves not only all possible amino acid sequences but also, all possible structures, most current approaches focus instead on the more tractable problem of finding the lowest-energy amino acid sequence for the desired structure, often checking by protein structure prediction in a second step that the desired structure is indeed the lowest-energy conformation for the designed sequence, and typically discarding a large fraction of designed sequences for which this is not the case.
View Article and Find Full Text PDFThe Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities.
View Article and Find Full Text PDFWith the rapid improvement of cryo-electron microscopy (cryo-EM) resolution, new computational tools are needed to assist and improve upon atomic model building and refinement options. This communication demonstrates that microscopists can now collaborate with the players of the computer game Foldit to generate high-quality de novo structural models. This development could greatly speed the generation of excellent cryo-EM structures when used in addition to current methods.
View Article and Find Full Text PDFOnline citizen science projects such as GalaxyZoo, Eyewire and Phylo have proven very successful for data collection, annotation and processing, but for the most part have harnessed human pattern-recognition skills rather than human creativity. An exception is the game EteRNA, in which game players learn to build new RNA structures by exploring the discrete two-dimensional space of Watson-Crick base pairing possibilities. Building new proteins, however, is a more challenging task to present in a game, as both the representation and evaluation of a protein structure are intrinsically three-dimensional.
View Article and Find Full Text PDFThe computer game Foldit is currently widely used as a biology and biochemistry teaching aid. Herein, we introduce a new feature of Foldit called "custom contests" that allows educators to create puzzles that fit their curriculum. The effectiveness of the custom contests is demonstrated by the use of five distinct custom contests in an upper-level biochemistry class.
View Article and Find Full Text PDFWe show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms.
View Article and Find Full Text PDFA series of dialkyl amino benzophenone dimers with various alkyl chain lengths is presented. Gaussian B3LYP/6-31G(d) calculations show that the band gap decreases within the dimer series as a function of the donor group efficiency. Theoretical calculations show that the interaction between phenyl-phenyl rings is more important than simple donor-acceptor effects.
View Article and Find Full Text PDF