Background: Molecular interaction networks can be efficiently studied using network visualization software such as Cytoscape. The relevant nodes, edges and their attributes can be imported in Cytoscape in various file formats, or directly from external databases through specialized third party plugins. However, molecular data are often stored in relational databases with their own specific structure, for which dedicated plugins do not exist.
View Article and Find Full Text PDFMotivation: Phosphorylation is a crucial post-translational protein modification mechanism with important regulatory functions in biological systems. It is catalyzed by a group of enzymes called kinases, each of which recognizes certain target sites in its substrate proteins. Several authors have built computational models trained from sets of experimentally validated phosphorylation sites to predict these target sites for each given kinase.
View Article and Find Full Text PDFThe development of structure-learning algorithms for gene regulatory networks depends heavily on the availability of synthetic data sets that contain both the original network and associated expression data. This article reports the application of SynTReN, an existing network generator that samples topologies from existing biological networks and uses Michaelis-Menten and Hill enzyme kinetics to simulate gene interactions. We illustrate the effects of different aspects of the expression data on the quality of the inferred network.
View Article and Find Full Text PDFBackground: In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms.
View Article and Find Full Text PDFBackground: The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data sets of the appropriate size and design are usually not available, there is a clear need to generate well-characterized synthetic data sets that allow thorough testing of learning algorithms in a fast and reproducible manner.
View Article and Find Full Text PDF