Publications by authors named "Koenderink A"

Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction.

View Article and Find Full Text PDF

Resolving structural misalignments on the nanoscale is of utmost importance in areas such as semiconductor device manufacturing. Metaphotonics provides a powerful toolbox to efficiently transduce information on the nanoscale into measurable far-field observables. In this work, we propose and demonstrate a novel interlaced displacement sensing platform based on diffractive anisotropic metasurfaces combined with polarimetric Fourier microscopy capable of resolving a few nanometer displacements within a device layer.

View Article and Find Full Text PDF

We demonstrate all-optical modulation with a near-unity contrast of nonlinear light generation in a dielectric metasurface. We study third-harmonic generation from silicon Fano-resonant metasurfaces excited by femtosecond pulses at 1480 nm wavelength. We modulate the metasurface resonance by free carrier excitation induced by absorption of an 800 nm pump pulse, leading to up to 93% suppression of third-harmonic generation.

View Article and Find Full Text PDF

Spontaneous symmetry breaking (SSB) is key for our understanding of phase transitions and the spontaneous emergence of order. In this work, we report that, for a two-dimensional (2D) periodic metasurface with gain, SSB occurs in the lasing transition. We study diffractive hexagonal plasmon nanoparticle lattices, where the -points in momentum space provide two modes that are degenerate in frequency and identically distributed in space.

View Article and Find Full Text PDF

Temporal dynamics of confined optical fields can provide valuable insights into light-matter interactions in complex optical systems, going beyond their frequency-domain description. Here, we present a new experimental approach based on interferometric autocorrelation (IAC) that reveals the dynamics of optical near-fields enhanced by collective resonances in periodic metasurfaces. We focus on probing the resonances known as waveguide-plasmon polaritons, which are supported by plasmonic nanoparticle arrays coupled to a slab waveguide.

View Article and Find Full Text PDF

Plasmon resonances at the surface of metallic antennas allow for extreme enhancement of Raman scattering. Intrinsic to plasmonics, however, is that extreme field confinement lacks precise spectral control, which would hold great promise in shaping the optomechanical interaction between light and molecular vibrations. We demonstrate an experimental platform composed of a plasmonic nanocube-on-mirror antenna coupled to an open, tunable Fabry-Perot microcavity for selective addressing of individual vibrational lines of molecules with strong Raman scattering enhancement.

View Article and Find Full Text PDF

In analogy to cavity optomechanics, enhancing specific sidebands of a Raman process with narrowband optical resonators would allow for parametric amplification, entanglement of light and molecular vibrations, and reduced transduction noise. We report on the demonstration of waveguide-addressable sideband-resolved surface-enhanced Raman scattering (SERS). We realized a hybrid plasmonic-photonic resonator consisting of a 1D photonic crystal cavity decorated with a sub-20 nm gap dimer nanoantenna.

View Article and Find Full Text PDF

Lead-halide perovskites offer excellent properties for lighting and display applications. Nanopatterning perovskite films could enable perovskite-based devices with designer properties, increasing their performance and adding novel functionalities. We demonstrate the potential of nanopatterning for achieving light emission of a perovskite film into a specific angular range by introducing periodic sol-gel structures between the injection and emissive layer by using substrate conformal imprint lithography (SCIL).

View Article and Find Full Text PDF

Coherent extreme-ultraviolet pulses from high-harmonic generation have ample applications in attosecond science, lensless imaging, and industrial metrology. However, tailoring complex spatial amplitude, phase, and polarization properties of extreme-ultraviolet pulses is made nontrivial by the lack of efficient optical elements. Here, we have overcome this limitation through nanoengineered solid samples, which enable direct control over amplitude and phase patterns of nonlinearly generated extreme-ultraviolet pulses.

View Article and Find Full Text PDF

Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes.

View Article and Find Full Text PDF

Molecular optomechanics describes surface-enhanced Raman scattering using the formalism of cavity optomechanics as a parametric coupling of the molecule's vibrational modes to the plasmonic resonance. Most of the predicted applications require intense electric field hotspots but spectrally narrow resonances, out of reach of standard plasmonic resonances. The Fano lineshapes resulting from the hybridization of dielectric-plasmonic resonators with a broad-band plasmon and narrow-band cavity mode allow reaching strong Raman enhancement with high- resonances, paving the way for sideband resolved molecular optomechanics.

View Article and Find Full Text PDF

Probing light-matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light-matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers.

View Article and Find Full Text PDF

Photon recycling, the iterative process of re-absorption and re-emission of photons in an absorbing medium, can play an important role in the power-conversion efficiency of photovoltaic cells. To date, several studies have proposed that this process may occur in bulk or thin films of inorganic lead-halide perovskites, but conclusive proof of the occurrence and magnitude of this effect is missing. Here, we provide clear evidence and quantitative estimation of photon recycling in CsPbBr nanocrystal suspensions by combining measurements of steady-state and time-resolved photoluminescence (PL) and PL quantum yield with simulations of photon diffusion through the suspension.

View Article and Find Full Text PDF

Plasmonic resonances can concentrate light into exceptionally small volumes, which approach the molecular scale. The extreme light confinement provides an advantageous pathway to probe molecules at the surface of plasmonic nanostructures with highly sensitive spectroscopies, such as surface-enhanced Raman scattering. Unavoidable energy losses associated with metals, which are usually seen as a nuisance, carry invaluable information on energy transfer to the adsorbed molecules through the resonance linewidth.

View Article and Find Full Text PDF

We analyze intermittency in intensity and fluorescence lifetime of CsPbBr perovskite quantum dots by applying unbiased Bayesian inference analysis methods. We apply change-point analysis (CPA) and a Bayesian state clustering algorithm to determine the timing of switching events and the number of states between which switching occurs in a statistically unbiased manner, which we have benchmarked particularly to apply to highly multistate emitters. We conclude that perovskite quantum dots display a plethora of gray states in which brightness, broadly speaking, correlates inversely with decay rate, confirming the multiple recombination centers model.

View Article and Find Full Text PDF

We report on a Python toolbox for unbiased statistical analysis of fluorescence intermittency properties of single emitters. Intermittency, that is, step-wise temporal variations in the instantaneous emission intensity and fluorescence decay rate properties, is common to organic fluorophores, II-VI quantum dots, and perovskite quantum dots alike. Unbiased statistical analysis of intermittency switching time distributions, involved levels, and lifetimes are important to avoid interpretation artifacts.

View Article and Find Full Text PDF

Silicon nanoparticles (Si-NPs) represent one of many types of nanomaterials, where the origin of emission is difficult to assess due to a complex interplay between the core and surface chemistry. Band-gap tunability in Si-NPs is predicted to span from the infrared to the ultraviolet spectral range, which is rarely observed in practice. In this work, we directly assess the size dependence of the optical band gap using a single-dot correlative microscopy tool, where the size of the individual NPs is measured using atomic force microscopy (AFM) and the optical band gap is evaluated from single-dot photoluminescence measured on the very same NPs.

View Article and Find Full Text PDF

Super-resolution imaging is often viewed in terms of engineering narrow point spread functions, but nanoscale optical metrology can be performed without real-space imaging altogether. In this paper, we investigate how partial knowledge of scattering nanostructures enables extraction of nanoscale spatial information from far-field radiation patterns. We use principal component analysis to find patterns in calibration data and use these patterns to retrieve the position of a point source of light.

View Article and Find Full Text PDF

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications.

View Article and Find Full Text PDF

Localizing light to nanoscale volumes through nanoscale resonators that are low loss and precisely tailored in spectrum to properties of matter is crucial for classical and quantum light sources, cavity QED, molecular spectroscopy, and many other applications. To date, two opposite strategies have been identified: to use either plasmonics with deep subwavelength confinement yet high loss and very poor spectral control or instead microcavities with exquisite quality factors yet poor confinement. In this work we realize hybrid plasmonic-photonic resonators that enhance the emission of single quantum dots, profiting from both plasmonic confinement and microcavity quality factors.

View Article and Find Full Text PDF

Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes.

View Article and Find Full Text PDF

We analyse the resonant mode structure and local density of states in high-Q hybrid plasmonic-photonic resonators composed of dielectric microdisks hybridized with pairs of plasmon antennas that are systematically swept in position through the cavity mode. On the one hand, this system is a classical realization of the cooperative resonant dipole-dipole interaction through a cavity mode, as is evident through predicted and measured resonance linewidths and shifts. At the same time, our work introduces the notion of 'phased array' antenna physics into plasmonic-photonic resonators.

View Article and Find Full Text PDF

Image processing and edge detection are at the core of several newly emerging technologies, such as augmented reality, autonomous driving, and more generally object recognition. Image processing is typically performed digitally using integrated electronic circuits and algorithms, implying fundamental size and speed limitations, as well as significant power needs. On the other hand, it can also be performed in a low-power analog fashion using Fourier optics, requiring, however, bulky optical components.

View Article and Find Full Text PDF

Plasmon nanocavity array lasers leverage the combination of locally enhanced electromagnetic fields at localized particle plasmons with collective diffractive effects in periodic lattice geometries for low-threshold lasing with excellent coherence, line width, and directivity. This combination is enabled by the collective reduction of ohmic and radiative loss of plasmon antennas that hybridize to form surface lattice resonances. At the same time, candidate lasing modes compete for gain in the tight confines of the unit cell, where electromagnetic fields and population inversion are strongly structured in space, time, and polarization.

View Article and Find Full Text PDF

Controlling the directivity of emission and absorption at the nanoscale holds great promise for improving the performance of optoelectronic devices. Previously, directive structures have largely been centered in two categories-nanoscale antennas, and classical lenses. Herein, we utilize an evolutionary algorithm to design 3D dielectric nanophotonic lens structures leveraging both the interference-based control of antennas and the broadband operation of lenses.

View Article and Find Full Text PDF