Publications by authors named "Koen L van Gassen"

Article Synopsis
  • - Microtubule affinity-regulating kinase 2 (MARK2) is crucial for neurons to develop properly, and variants in MARK2 have been linked to autism spectrum disorder (ASD) and other neurodevelopmental issues, with most being loss-of-function mutations.
  • - A study analyzed 31 individuals with MARK2 variants showing ASD along with unique facial features, finding that the loss of MARK2 disrupts early neuron development and leads to abnormal growth patterns in neural cells.
  • - Research using iPSC models and MARK2-deficient mice highlighted the link between MARK2 loss and issues in neuronal function, connecting it to the reduction of the WNT/β-catenin signaling pathway, while suggesting lithium as a potential treatment
View Article and Find Full Text PDF

Androgen insensitivity syndrome (AIS) is a difference of sex development (DSD) characterized by different degrees of undervirilization in individuals with a 46,XY karyotype despite normal to high gonadal testosterone production. Classically, AIS is explained by hemizygous mutations in the X-chromosomal androgen receptor (AR) gene. Nevertheless, the majority of individuals with clinically diagnosed AIS do not carry an AR gene mutation.

View Article and Find Full Text PDF
Article Synopsis
  • HCN gated channels play a vital role in brain functions like learning and sensory processing, and their dysfunction is linked to brain disorders, particularly epilepsy.
  • The study identifies 21 individuals with genetic variations associated with developmental delays, intellectual disabilities, and epilepsy, expanding our understanding of related disorders.
  • Functional tests on specific variants revealed that some mutations significantly increased HCN2 channel conductance, while others caused loss of function and impaired channel trafficking, suggesting diverse impacts of these variants on brain function.
View Article and Find Full Text PDF

Purpose: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease.

View Article and Find Full Text PDF

Purpose: Few studies have systematically analyzed the structure and content of laboratory exome sequencing reports from the same patient.

Methods: We merged 8 variants from patients into "normal" exomes to create virtual patient-parent trios. We provided laboratories worldwide with the data and patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy).

View Article and Find Full Text PDF

Purpose: Existing research suggests that while some laboratories report variants of uncertain significance, unsolicited findings (UF), and/or secondary findings (SF) when performing exome sequencing, others do not.

Methods: To investigate reporting differences, we created virtual patient-parent trio data by merging variants from patients into "normal" exomes. We invited laboratories worldwide to analyze the data along with patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy).

View Article and Find Full Text PDF

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability.

View Article and Find Full Text PDF

Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate.

View Article and Find Full Text PDF

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9).

View Article and Find Full Text PDF

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD).

View Article and Find Full Text PDF

Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta.

View Article and Find Full Text PDF

Background: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling.

View Article and Find Full Text PDF

Purpose: To characterize the molecular genetics of autosomal recessive Noonan syndrome.

Methods: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis.

View Article and Find Full Text PDF

Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.

View Article and Find Full Text PDF

Objective: To examine the role of mutations in GABRB3 encoding the β subunit of the GABA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes.

Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs.

Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands from multiplex families.

View Article and Find Full Text PDF

Introduction: Early-onset epileptic encephalopathy caused by biallelic SLC13A5 mutations is characterized by seizure onset in the first days of life, refractory epilepsy and developmental delay. Little detailed information about the brain MRI features is available in these patients.

Methods: Observational study describing the neuro-imaging findings in eight patients (five families) with mutations in the SLC13A5 gene.

View Article and Find Full Text PDF

Mutation of fibroblast growth factor 13 (FGF13) has recently been implicated in genetic epilepsy with febrile seizures plus (GEFS+) in a single family segregating a balanced translocation with a breakpoint in this X chromosome gene, predicting a partial knockout involving 3 of 5 known FGF13 isoforms. Investigation of a mouse model of complete Fgf13 knock-out revealed increased susceptibility to hyperthermia-induced seizures and epilepsy. Here we investigated whether mutation of FGF13 would explain other cases of GEFS+ compatible with X-linked inheritance.

View Article and Find Full Text PDF

Human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2) has been previously associated with intellectual disability and developmental delay in three patients. Here, we describe six patients with developmental delay, intellectual disability, and dysmorphic features with de novo likely gene-damaging variants in HIVEP2 identified by whole-exome sequencing (WES). HIVEP2 encodes a large transcription factor that regulates various neurodevelopmental pathways.

View Article and Find Full Text PDF

Background: The presence of increased urinary concentrations of both methylmalonic acid (MMA) and malonic acid (MA) is assumed to differentiate combined malonic and methylmalonic aciduria (CMAMMA), due to mutations in the ACSF3 gene, from other causes of methylmalonic aciduria (classic MMAemia). Detection of MA in urine, however, is challenging since excretion of MA can be easily missed. The objective of the study was to develop a method for quantification of MA in plasma to allow differentiation between CMAMMA and classic MMAemia.

View Article and Find Full Text PDF

Purpose: This study investigated whole-exome sequencing (WES) yield in a subset of intellectually disabled patients referred to our clinical diagnostic center and calculated the total costs of these patients' diagnostic trajectory in order to evaluate early WES implementation.

Methods: We compared 17 patients' trio-WES yield with the retrospective costs of diagnostic procedures by comprehensively examining patient records and collecting resource use information for each patient, beginning with patient admittance and concluding with WES initiation. We calculated cost savings using scenario analyses to evaluate the costs replaced by WES when used as a first diagnostic tool.

View Article and Find Full Text PDF

Febrile seizures are the most prevalent type of seizures among children up to 5 years of age (2-4% of Western-European children). Complex febrile seizures are associated with an increased risk to develop temporal lobe epilepsy. To investigate short- and long-term effects of experimental febrile seizures (eFS), we induced eFS in highly febrile convulsion-susceptible C57BL/6J mice at post-natal day 10 by exposure to hyperthermia (HT) and compared them to normotherm-exposed (NT) mice.

View Article and Find Full Text PDF

CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.

View Article and Find Full Text PDF

Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development.

View Article and Find Full Text PDF
Article Synopsis
  • Intellectual disability (ID) impacts 1%-3% of the population, primarily affecting males, but this study reveals 35 de novo mutations in the DDX3X gene linked to ID in females, accounting for 1%-3% of unexplained cases in women.
  • While no de novo mutations were found in males, three families showed missense mutations in DDX3X, indicating an X-linked recessive inheritance pattern, where affected males had ID and carrier females were unaffected.
  • The research explores the pathogenic mechanisms using zebrafish models, showing that DDX3X mutations cause loss-of-function effects on the Wnt pathway, with differences in disease effects between genders suggesting a complex interaction of DDX3X expression
View Article and Find Full Text PDF