Background: During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage.
View Article and Find Full Text PDFCellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development.
View Article and Find Full Text PDFAnimal cells decide where to build the cytokinetic apparatus by sensing the position of the mitotic spindle. Reflecting a long-standing presumption that a furrow-inducing stimulus travels from spindle to cortex via microtubules, debate continues about which microtubules, and in what geometry, are essential for accurate cytokinesis. We used live imaging in urchin and frog embryos to evaluate the relationship between microtubule organization and cytokinetic furrow position.
View Article and Find Full Text PDFEvidence from various systems suggests that either asters or the midzone of the mitotic spindle are the predominant determinants of cleavage plane position. Disrupting spindle midzone formation in the one-cell Caenorhabditis elegans embryo, such as by using mutants of the centralspindlin component ZEN-4, prevents completion of cytokinesis but does not inhibit furrowing. However, furrowing is inhibited by the simultaneous depletion of ZEN-4 with either PAR-2 or G alpha, which are required for asymmetric divisions.
View Article and Find Full Text PDFThe process of cytokinesis can be divided into two stages: the assembly and constriction of an actomyosin ring giving rise to a narrow intracellular canal and the final breaking and resealing of this canal. Mutations in several genes of Caenorhabditis elegans disrupt the spindle midzone (anti-parallel microtubules and associated proteins that form between the spindle poles) and give rise to failures in the completion of cytokinesis. We show that loss of function of spd-1 causes midzone disruptions, although cytokinesis generally completes.
View Article and Find Full Text PDF