Mushroom-forming fungi frequently encounter competitors during their lifecycle, but their defense mechanisms remain largely unexplored. We studied the response of the mushroom-forming fungus Schizophyllum commune during interaction with the fungal competitors Trichoderma harzianum, Trichoderma aggressivum and Purpureocillium lilacinum and the bacterial competitor Serratia quinivorans. Transcriptomics revealed 632 up-regulated genes in the direct interaction zone, which were enriched in small secreted proteins and transporters.
View Article and Find Full Text PDFThe vegetative mycelium of Agaricus bisporus supplies developing white button mushrooms with water and nutrients. However, it is not yet known which part of the mycelium contributes to the feeding of the mushrooms and how this depends on growth conditions. Here we used photon counting scintillation imaging to track translocation of the C-radiolabeled metabolically inert amino acid analogue α-aminoisobutyric acid (C-AIB).
View Article and Find Full Text PDFWood and litter degrading fungi are the main decomposers of lignocellulose and thus play a key role in carbon cycling in nature. Here, we provide evidence for a novel lignocellulose degradation strategy employed by the litter degrading fungus Agaricus bisporus (known as the white button mushroom). Fusion of hyphae allows this fungus to synchronize the activity of its mycelium over large distances (50 cm).
View Article and Find Full Text PDF