In this article, we present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly on both gate-based and quantum annealing platforms. This is the first time this important application in bioinformatics is modeled using quantum computation. Each one of the four steps of the implementation (TSP, QUBO, Hamiltonians and QAOA) is explained with a proof-of-concept example to target both the genomics research community and quantum application developers in a self-contained manner.
View Article and Find Full Text PDFBMC Bioinformatics
September 2020
Background: In Overlap-Layout-Consensus (OLC) based de novo assembly, all reads must be compared with every other read to find overlaps. This makes the process rather slow and limits the practicality of using de novo assembly methods at a large scale in the field. Darwin is a fast and accurate read overlapper that can be used for de novo assembly of state-of-the-art third generation long DNA reads.
View Article and Find Full Text PDFFollowing publication of the original article [1], the author requested changes to the figures 4, 7, 8, 9, 12 and 14 to align these with the text. The corrected figures are supplied below.
View Article and Find Full Text PDFBMC Bioinformatics
October 2019
Background: Due the computational complexity of sequence alignment algorithms, various accelerated solutions have been proposed to speedup this analysis. NVBIO is the only available GPU library that accelerates sequence alignment of high-throughput NGS data, but has limited performance. In this article we present GASAL2, a GPU library for aligning DNA and RNA sequences that outperforms existing CPU and GPU libraries.
View Article and Find Full Text PDFBackground: Pairwise sequence alignment is widely used in many biological tools and applications. Existing GPU accelerated implementations mainly focus on calculating optimal alignment score and omit identifying the optimal alignment itself. In GATK HaplotypeCaller (HC), the semi-global pairwise sequence alignment with traceback has so far been difficult to accelerate effectively on GPUs.
View Article and Find Full Text PDFWe present our work on hardware accelerated genomics pipelines, using either FPGAs or GPUs to accelerate execution of BWA-MEM, a widely-used algorithm for genomic short read mapping. The mapping stage can take up to 40% of overall processing time for genomics pipelines. Our implementation offloads the Seed Extension function, one of the main BWA-MEM computational functions, onto an accelerator.
View Article and Find Full Text PDFGATK HaplotypeCaller (HC) is a popular variant caller, which is widely used to identify variants in complex genomes. However, due to its high variants detection accuracy, it suffers from long execution time. In GATK HC, the pair-HMMs forward algorithm accounts for a large percentage of the total execution time.
View Article and Find Full Text PDF