Publications by authors named "Koelle K"

Viral infections are characterized by dispersal from an initial site to secondary locations within the host. How the resultant spatial heterogeneity shapes within-host genetic diversity and viral evolutionary pathways is poorly understood. Here, we show that virus dispersal within and between the nasal cavity and trachea maintains diversity and is therefore conducive to adaptive evolution, whereas dispersal to the lungs gives rise to population heterogeneity.

View Article and Find Full Text PDF

Reinfections with respiratory viruses such as influenza viruses and coronaviruses are thought to be driven by ongoing antigenic immune escape in the viral population. However, this does not explain why antigenic variation is frequently observed in these viruses relative to viruses such as measles that undergo systemic replication. Here, we suggest that the rapid rate of waning immunity in the respiratory tract is the key driver of antigenic evolution in respiratory viruses.

View Article and Find Full Text PDF

Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied influenza A virus (IAV) diversity in pigs during a county fair, collecting daily nasal samples to analyze viral dynamics in this key host.
  • They found co-circulation of H1N1 and H3N2 subtypes and sequenced over 500 samples, revealing low genetic diversity with most variants present at less than 10% frequency.
  • The study indicated that purifying selection and genetic drift influence IAV evolution in pigs, mirroring patterns observed in human infections and emphasizing the importance of understanding these dynamics for spillover risks.
View Article and Find Full Text PDF

The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies.

View Article and Find Full Text PDF

Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs.

View Article and Find Full Text PDF

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections.

View Article and Find Full Text PDF

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host.

View Article and Find Full Text PDF

Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs.

View Article and Find Full Text PDF

Influenza is an ribonucleic acid virus with a genome that comprises eight segments. Experiments show that the vast majority of virions fail to express one or more gene segments and thus cannot cause a productive infection on their own. These particles, called semi-infectious particles (SIPs), can induce virion production through complementation when multiple SIPs are present in an infected cell.

View Article and Find Full Text PDF

The effect of norovirus dose on outcomes such as virus shedding and symptoms after initial infection is not well understood. We performed a secondary analysis of a human challenge study by using Bayesian mixed-effects models. As the dose increased from 4.

View Article and Find Full Text PDF

Epidemiological models are commonly fit to case and pathogen sequence data to estimate parameters and to infer unobserved disease dynamics. Here, we present an inference approach based on sequence data that is well suited for model fitting early on during the expansion of a viral lineage. Our approach relies on a trajectory of segregating sites to infer epidemiological parameters within a Sequential Monte Carlo framework.

View Article and Find Full Text PDF

H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process.

View Article and Find Full Text PDF

Influenza A virus (IAV) genetic exchange through reassortment has the potential to accelerate viral evolution and has played a critical role in the generation of multiple pandemic strains. For reassortment to occur, distinct viruses must co-infect the same cell. The spatio-temporal dynamics of viral dissemination within an infected host therefore define opportunity for reassortment.

View Article and Find Full Text PDF

Periodic resurgences of COVID-19 in the coming years can be expected, while public health interventions may be able to reduce their intensity. We used a transmission model to assess how the use of booster doses and non-pharmaceutical interventions (NPIs) amid ongoing pathogen evolution might influence future transmission waves. We find that incidence is likely to increase as NPIs relax, with a second seasonally driven surge expected in autumn 2022.

View Article and Find Full Text PDF

RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these patterns. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by viruses relaxes the strength of purifying selection and thereby increases the rate of deleterious mutation accumulation.

View Article and Find Full Text PDF

Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts.

View Article and Find Full Text PDF

In early 2020, as diagnostic and surveillance responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ramped up, attention focused primarily on returning international travelers. Here, we build on existing studies characterizing early patterns of SARS-CoV-2 spread within the USA by analyzing detailed clinical, molecular, and viral genomic data from the state of Georgia through March 2020. We find evidence for multiple early introductions into Georgia, despite relatively sparse sampling.

View Article and Find Full Text PDF

We have come a long way since the start of the COVID-19 pandemic-from hoarding toilet paper and wiping down groceries to sending our children back to school and vaccinating billions. Over this period, the global community of epidemiologists and evolutionary biologists has also come a long way in understanding the complex and changing dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. In this Review, we retrace our steps through the questions that this community faced as the pandemic unfolded.

View Article and Find Full Text PDF

Segmentation of viral genomes provides the potential for genetic exchange within coinfected cells. However, for this potential to be realized, coinfecting genomes must mix during the viral life cycle. The efficiency of reassortment, in turn, dictates its potential to drive evolution.

View Article and Find Full Text PDF

A reanalysis of SARS-CoV-2 deep sequencing data from donor-recipient pairs indicates that transmission bottlenecks are very narrow (one to three virions).

View Article and Find Full Text PDF

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants eliciting immune escape or the ability to displace circulating lineages could emerge within individual hosts. Though growing evidence suggests that novel variants arise during prolonged infections, most infections are acute. Understanding how efficiently variants emerge and transmit among acutely-infected hosts is therefore critical for predicting the pace of long-term SARS-CoV-2 evolution.

View Article and Find Full Text PDF

How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A.

View Article and Find Full Text PDF

Viral recombination can generate novel genotypes with unique phenotypic characteristics, including transmissibility and virulence. Although the capacity for recombination among betacoronaviruses is well documented, recombination between strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been characterized in detail. Here, we present a lightweight approach for detecting genomes that are potentially recombinant.

View Article and Find Full Text PDF