Publications by authors named "Kody J H Law"

Cyber-physical system security presents unique challenges to conventional measurement science and technology. Anomaly detection in software-assisted physical systems, such as those employed in additive manufacturing or in DNA synthesis, is often hampered by the limited available parameter space of the underlying mechanism that is transducing the anomaly. As a result, the formulation of anomaly detection for such systems often leads to inverse or ill-posed problems, requiring statistical treatments.

View Article and Find Full Text PDF

We demonstrate self-trapping of singly-charged vortices at the surface of an optically induced two-dimensional photonic lattice. Under appropriate conditions of self-focusing nonlinearity, a singly-charged vortex beam can self-trap into a stable semi-infinite gap surface vortex soliton through a four-site excitation. However, a single-site excitation leads to a quasi-localized state in the first photonic gap, and our theoretical analysis illustrates that such a bandgap surface vortex soliton is always unstable.

View Article and Find Full Text PDF

We demonstrate the self-trapping of single- and double-charged optical vortices in waveguide lattices induced with a self-defocusing nonlinearity. Under appropriate conditions, a donut-shaped single-charged vortex evolves into a stable discrete gap vortex soliton, but a double-charged vortex turns into a self-trapped quadrupole-like structure. Spectrum measurement and numerical analysis suggest that the gap vortex soliton does not bifurcate from the edge of the Bloch band, quite different from previously observed gap spatial solitons.

View Article and Find Full Text PDF