Publications by authors named "Kodajova P"

Background: Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood.

View Article and Find Full Text PDF

Background: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood.

Methods: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model.

View Article and Find Full Text PDF

A substantial portion of patients do not benefit from programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) checkpoint inhibition therapies, necessitating a deeper understanding of predictive biomarkers. Immunohistochemistry (IHC) has played a pivotal role in assessing PD-L1 expression, but small-molecule positron emission tomography (PET) tracers could offer a promising avenue to address IHC-associated limitations, i.e.

View Article and Find Full Text PDF

Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells.

View Article and Find Full Text PDF

Introduction: Extracorporeal cardiopulmonary resuscitation (ECPR) is an emerging strategy in highly selected patients with refractory cardiac arrest (CA). Animal models can help to identify new therapeutic strategies to improve neurological outcome and cardiac function after global ischemia in CA. Aim of the study was to establish a reproducible ECPR rat model of ventricular fibrillation CA (VFCA) that leads to consistent neuronal damage with acceptable long-term survival rates, which can be used for future research.

View Article and Find Full Text PDF

Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease.

View Article and Find Full Text PDF

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL.

View Article and Find Full Text PDF

Background: Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • - Frequent mutations in the KMT2C gene, particularly truncation mutations, are found in various cancers, including prostate cancer, but their biological effects have not been well understood.
  • - Research involved knocking out the Kmt2c gene's catalytic core in mouse prostate tissue, revealing that impaired KMT2C activity promotes cancer cell proliferation, metastasis, and significantly reduces survival in cancer models.
  • - The study links KMT2C mutations to poorer patient outcomes through increased MYC activity and decreased levels of the cell cycle repressor p16, suggesting that targeting MYC signaling could be a potential treatment strategy for affected prostate cancer patients.
View Article and Find Full Text PDF

In pre-clinical and clinical settings, active immunization with a Her-2/neu vaccine (HerVaxx), comprising B-cell peptide from Trastuzumab binding site, has been shown to reduce primary tumor growth via induction of polyclonal anti-tumor immune responses and immunological memory. Here, we tested the combination of HerVaxx and the recently identified B-cell epitope/mimotope of Pertuzumab, i.e.

View Article and Find Full Text PDF

Prostate cancer (PCa) has a broad spectrum of clinical behavior; hence, biomarkers are urgently needed for risk stratification. Here, we aim to find potential biomarkers for risk stratification, by utilizing a gene co-expression network of transcriptomics data in addition to laser-microdissected proteomics from human and murine prostate FFPE samples. We show up-regulation of oxidative phosphorylation (OXPHOS) in PCa on the transcriptomic level and up-regulation of the TCA cycle/OXPHOS on the proteomic level, which is inversely correlated to STAT3 expression.

View Article and Find Full Text PDF

Resistance to anaplastic lymphoma kinase (ALK)-targeted therapy in ALK-positive non-small cell lung cancer has been reported, with the majority of acquired resistance mechanisms relying on bypass signaling. To proactively identify resistance mechanisms in ALK-positive neuroblastoma (NB), we herein employ genome-wide CRISPR activation screens of NB cell lines treated with brigatinib or ceritinib, identifying PIM1 as a putative resistance gene, whose high expression is associated with high-risk disease and poor survival. Knockdown of PIM1 sensitizes cells of differing MYCN status to ALK inhibitors, and in patient-derived xenografts of high-risk NB harboring ALK mutations, the combination of the ALK inhibitor ceritinib and PIM1 inhibitor AZD1208 shows significantly enhanced anti-tumor efficacy relative to single agents.

View Article and Find Full Text PDF

Interferon gamma (IFN-gamma) has recently been implicated in cancer immunosurveillance. Among the most abundant proteins induced by IFN-gamma are guanylate binding proteins (GBPs), which belong to the superfamily of large GTPases and are widely expressed in various species. Here, we investigated whether the well-known human GBP-1 (hGBP-1), which has been shown to exert antiangiogenic activities and was described as a prognostic marker in colorectal carcinomas, may contribute to an IFN-gamma-mediated tumor defense.

View Article and Find Full Text PDF

Background: We have previously described the generation of reconstituting retroviral (ReCon) vectors designed for cancer gene therapy using cytotoxic gene products. The unique vector structure with a promoter physically separated from the transgene allows generation of stable virus producer cells irrespective of the toxic gene. The mechanism of synthesis of DNA from retroviral RNA dictates that infection leads to the reconstitution of functional expression cassettes in the target cell.

View Article and Find Full Text PDF

Gene therapy has evolved into a tempting strategy for the management of cancer and other life-threatening diseases. Various approaches employ retroviral vectors to deliver the therapeutic gene. The profound knowledge about retrovirus biology allows the generation of increasingly advanced vector systems as well as an accurate assessment and management of potential safety risks.

View Article and Find Full Text PDF

Background: The potential use of gene therapy for cancer treatment is being intensively studied. One approach utilises the expression of genes encoding cytotoxic proteins. Such proteins can affect cellular viability, for example by inhibiting the translation machinery or disturbing membrane integrity.

View Article and Find Full Text PDF

We present evidence that the HIV-1 Rev protein can heterologously regulate expression of the simple beta retrovirus mouse mammary tumour virus (MMTV). Up to 10-fold upregulation was seen in a functional assay system when specific MMTV sequences were substituted for the HIV-1 Rev responsive element (RRE). RNA gel shift analysis showed that purified recombinant Rev could specifically bind to MMTV unique region 3 prime (U3) RNA and that these sequences could compete for wild-type Rev-RRE binding approximately 20-fold more efficiently than a non-specific competitor RNA.

View Article and Find Full Text PDF