J Med Internet Res
January 2025
The integration of artificial intelligence (AI) into health communication systems has introduced a transformative approach to public health management, particularly during public health emergencies, capable of reaching billions through familiar digital channels. This paper explores the utility and implications of generalist conversational artificial intelligence (CAI) advanced AI systems trained on extensive datasets to handle a wide range of conversational tasks across various domains with human-like responsiveness. The specific focus is on the application of generalist CAI within messaging services, emphasizing its potential to enhance public health communication.
View Article and Find Full Text PDFPurpose: Caregivers in pediatric oncology need accurate and understandable information about their child's condition, treatment, and side effects. This study assesses the performance of publicly accessible large language model (LLM)-supported tools in providing valuable and reliable information to caregivers of children with cancer.
Methods: In this cross-sectional study, we evaluated the performance of the four LLM-supported tools-ChatGPT (GPT-4), Google Bard (Gemini Pro), Microsoft Bing Chat, and Google SGE-against a set of frequently asked questions (FAQs) derived from the Children's Oncology Group Family Handbook and expert input (In total, 26 FAQs and 104 generated responses).
Background: Health outcomes are significantly influenced by unmet social needs. Although screening for social needs has become common in health care settings, there is often poor linkage to resources after needs are identified. The structural barriers (eg, staffing, time, and space) to helping address social needs could be overcome by a technology-based solution.
View Article and Find Full Text PDFObjectives: To assess the effects of digital patient decision-support tools for atrial fibrillation (AF) treatment decisions in adults with AF.
Study Design: Systematic review and meta-analysis.
Eligibility Criteria: Eligible randomised controlled trials (RCTs) evaluated digital patient decision-support tools for AF treatment decisions in adults with AF.
Background: Hypoglycemia threatens cognitive function and driving safety. Previous research investigated in-vehicle voice assistants as hypoglycemia warnings. However, they could startle drivers.
View Article and Find Full Text PDFBackground: Hypoglycemia is a frequent and acute complication in type 1 diabetes mellitus (T1DM) and is associated with a higher risk of car mishaps. Currently, hypoglycemia can be detected and signaled through flash glucose monitoring or continuous glucose monitoring devices, which require manual and visual interaction, thereby removing the focus of attention from the driving task. Hypoglycemia causes a decrease in attention, thereby challenging the safety of using such devices behind the wheel.
View Article and Find Full Text PDFBackground: Management of major hemorrhage frequently requires massive transfusion (MT) support, which should be delivered effectively and efficiently. We have previously developed a clinical decision support system (CDS) for MT using a multicenter multidisciplinary user-centered design study. Here we examine its impact when administering a MT.
View Article and Find Full Text PDFBackground: Managing critical bleeding with massive transfusion (MT) requires a multidisciplinary team, often physically separated, to perform several simultaneous tasks at short notice. This places a significant cognitive load on team members, who must maintain situational awareness in rapidly changing scenarios. Similar resuscitation scenarios have benefited from the use of clinical decision support (CDS) tools.
View Article and Find Full Text PDFBackground: Mental health interventions delivered through mobile health (mHealth) technologies can increase the access to mental health services, especially among university students. The development of mHealth intervention is complex and needs to be context sensitive. There is currently limited evidence on the perceptions, needs, and barriers related to these interventions in the Southeast Asian context.
View Article and Find Full Text PDFBackground: Health care and well-being are 2 main interconnected application areas of conversational agents (CAs). There is a significant increase in research, development, and commercial implementations in this area. In parallel to the increasing interest, new challenges in designing and evaluating CAs have emerged.
View Article and Find Full Text PDFObjectives: To investigate the feasibility of the be.well app and its personalization approach which regularly considers users' preferences, amongst university students.
Methods: We conducted a mixed-methods, pre-post experiment, where participants used the app for 2 months.
This paper reviews different types of conversational agents used in health care for chronic conditions, examining their underlying communication technology, evaluation measures, and AI methods. A systematic search was performed in February 2021 on PubMed Medline, EMBASE, PsycINFO, CINAHL, Web of Science, and ACM Digital Library. Studies were included if they focused on consumers, caregivers, or healthcare professionals in the prevention, treatment, or rehabilitation of chronic diseases, involved conversational agents, and tested the system with human users.
View Article and Find Full Text PDFBackground: Healthy behaviors are crucial for maintaining a person's health and well-being. The effects of health behavior interventions are mediated by individual and contextual factors that vary over time. Recently emerging smartphone-based ecological momentary interventions (EMIs) can use real-time user reports (ecological momentary assessments [EMAs]) to trigger appropriate support when needed in daily life.
View Article and Find Full Text PDFGiven that the one-size-fits-all approach to mobile health interventions have limited effects, a personalized approach might be necessary to promote healthy behaviors and prevent chronic conditions. Our systematic review aims to evaluate the effectiveness of personalized mobile interventions on lifestyle behaviors (i.e.
View Article and Find Full Text PDFBackground: Bayesian modelling and statistical text analysis rely on informed probability priors to encourage good solutions.
Objective: This paper empirically analyses whether text in medical discharge reports follow Zipf's law, a commonly assumed statistical property of language where word frequency follows a discrete power-law distribution.
Method: We examined 20,000 medical discharge reports from the MIMIC-III dataset.
To inform the development of automated summarization of clinical conversations, this study sought to estimate the proportion of doctor-patient communication in general practice (GP) consultations used for generating a consultation summary. Two researchers with a medical degree read the transcripts of 44 GP consultations and highlighted the phrases to be used for generating a summary of the consultation. For all consultations, less than 20% of all words in the transcripts were needed for inclusion in the summary.
View Article and Find Full Text PDFObjective: The study sought to understand the potential roles of a future artificial intelligence (AI) documentation assistant in primary care consultations and to identify implications for doctors, patients, healthcare system, and technology design from the perspective of general practitioners.
Materials And Methods: Co-design workshops with general practitioners were conducted. The workshops focused on (1) understanding the current consultation context and identifying existing problems, (2) ideating future solutions to these problems, and (3) discussing future roles for AI in primary care.
Background: People with low back pain (LBP) in the community often do not receive evidence-based advice and management. Community pharmacists can play an important role in supporting people with LBP as pharmacists are easily accessible to provide first-line care. However, previous research suggests that pharmacists may not consistently deliver advice that is concordant with guideline recommendations and may demonstrate difficulty determining which patients require prompt medical review.
View Article and Find Full Text PDFWe are all together in a fight against the COVID-19 pandemic. Chatbots, if effectively designed and deployed, could help us by sharing up-to-date information quickly, encouraging desired health impacting behaviors, and lessening the psychological damage caused by fear and isolation. Despite this potential, the risk of amplifying misinformation and the lack of prior effectiveness research is cause for concern.
View Article and Find Full Text PDFBackground: Conversational agents (CAs) are systems that mimic human conversations using text or spoken language. Their widely used examples include voice-activated systems such as Apple Siri, Google Assistant, Amazon Alexa, and Microsoft Cortana. The use of CAs in health care has been on the rise, but concerns about their potential safety risks often remain understudied.
View Article and Find Full Text PDFClinicians spend a large amount of time on clinical documentation of patient encounters, often impacting quality of care and clinician satisfaction, and causing physician burnout. Advances in artificial intelligence (AI) and machine learning (ML) open the possibility of automating clinical documentation with digital scribes, using speech recognition to eliminate manual documentation by clinicians or medical scribes. However, developing a digital scribe is fraught with problems due to the complex nature of clinical environments and clinical conversations.
View Article and Find Full Text PDFBackground: The personalization of conversational agents with natural language user interfaces is seeing increasing use in health care applications, shaping the content, structure, or purpose of the dialogue between humans and conversational agents.
Objective: The goal of this systematic review was to understand the ways in which personalization has been used with conversational agents in health care and characterize the methods of its implementation.
Methods: We searched on PubMed, Embase, CINAHL, PsycInfo, and ACM Digital Library using a predefined search strategy.
Objective: The objective of this study is to characterize the dynamic structure of primary care consultations by identifying typical activities and their inter-relationships to inform the design of automated approaches to clinical documentation using natural language processing and summarization methods.
Materials And Methods: This is an observational study in Australian general practice involving 31 consultations with 4 primary care physicians. Consultations were audio-recorded, and computer interactions were recorded using screen capture.
Background: Context-aware systems, also known as context-sensitive systems, are computing applications designed to capture, interpret, and use contextual information and provide adaptive services according to the current context of use. Context-aware systems have the potential to support patients with chronic conditions; however, little is known about how such systems have been utilized to facilitate patient work.
Objective: This study aimed to characterize the different tasks and contexts in which context-aware systems for patient work were used as well as to assess any existing evidence about the impact of such systems on health-related process or outcome measures.
Objective: Our objective was to review the characteristics, current applications, and evaluation measures of conversational agents with unconstrained natural language input capabilities used for health-related purposes.
Methods: We searched PubMed, Embase, CINAHL, PsycInfo, and ACM Digital using a predefined search strategy. Studies were included if they focused on consumers or healthcare professionals; involved a conversational agent using any unconstrained natural language input; and reported evaluation measures resulting from user interaction with the system.