Publications by authors named "Koc Kan Ho"

Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic and blood cancers. The difficulty of eliminating bone-residing cancer, especially drug-resistant cancer, necessitates novel, alternative treatments to manipulate tumor cells and their microenvironment, with minimal off-target effects. To this end, bone-targeted conjugate (BP-Btz) was generated by linking bortezomib (Btz, an anticancer, bone-stimulatory drug) to a bisphosphonate (BP, a targeting ligand) through a cleavable linker that enables spatiotemporally controlled delivery of Btz to bone under acidic conditions for treating multiple myeloma (MM).

View Article and Find Full Text PDF

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E receptor 4 (EP4).

View Article and Find Full Text PDF

Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo[1,5-a]pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases.

View Article and Find Full Text PDF

The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers.

View Article and Find Full Text PDF

Activators of the pyruvate kinase M2 (PKM2) are currently attracting significant interest as potential anticancer therapies. They may achieve a novel antiproliferation response in cancer cells through modulation of the classic 'Warburg effect' characteristic of aberrant metabolism. In this Letter, we describe the optimization of a weakly active screening hit to a structurally novel series of small molecule 3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as potent PKM2 activators.

View Article and Find Full Text PDF

2-Arylamino-4-aryl-pyrimidines were found to be potent inhibitors of PAK1 kinase. The synthesis and SAR are described. The incorporation of a bromide at the 5-position of the pyrimidine core and in combination with a 1,2-dimethylpiperazine pendant domain yielded a lead compound with potent PAK1 inhibition and anti-proliferative activity in various colon cancer cell lines.

View Article and Find Full Text PDF

Inactivation of the M2 form of pyruvate kinase (PKM2) in cancer cells is associated with increased tumorigenicity. To test the hypothesis that tumor growth may be inhibited through the PKM2 pathway, we generated a series of small-molecule PKM2 activators. The compounds exhibited low nanomolar activity in both biochemical and cell-based PKM2 activity assays.

View Article and Find Full Text PDF

A series of compounds based on a 4-phenyl-2-phenylaminopyridine scaffold that are potent and selective inhibitors of Traf2- and Nck-interacting kinase (TNIK) activity are described. These compounds were used as tools to test the importance of TNIK kinase activity in signaling and proliferation in Wnt-activated colorectal cancer cells. The results indicate that pharmacological inhibition of TNIK kinase activity has minimal effects on either Wnt/TCF4/β-catenin-driven transcription or viability.

View Article and Find Full Text PDF

Epigenetic modification of DNA leads to changes in gene expression. DNA methyltransferases (DNMTs) comprise a family of nuclear enzymes that catalyze the methylation of CpG dinucleotides, resulting in an epigenetic methylome distinguished between normal cells and those in disease states such as cancer. Disrupting gene expression patterns through promoter methylation has been implicated in many malignancies and supports DNMTs as attractive therapeutic targets.

View Article and Find Full Text PDF

Systematic optimisation of a poorly soluble lead series of isoxazole-3-carboxamides was conducted. Substitution of the 4-position with specific polar functionality afforded the requisite balance of potency, solubility and physicochemical properties. Compound 21a was found to be efficacious in the rat Capsaicin Hargreaves assay following oral administration.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) (V(3)) antagonists are described. 2-(4-Oxo-2-aryl-quinazolin-3(4H)-yl)acetamides have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and oxytocin (OT). Optimised compound 12j demonstrates a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.

View Article and Find Full Text PDF

Optimisation of a screening hit incorporating both TRPV1 activity and solubility was conducted. Substitution of the isoxazole-3-carboxamide with the bespoke 1S, 3R-3-aminocyclohexanol motif afforded the requisite balance of potency and solubility. Compounds 32 and 40 were found to have antihyperalgesic effects in the rat CFA Hg assay and induce a mechanism based hyperthermia.

View Article and Find Full Text PDF

High-throughput screening of 3.87 million compounds delivered a novel series of non-steroidal GR antagonists. Subsequent rounds of optimisation allowed progression from a non-selective ligand with a poor ADMET profile to an orally bioavailable, selective, stable, glucocorticoid receptor antagonist.

View Article and Find Full Text PDF

A novel series of quinolinone-based adenosine A(2B) receptor antagonists was identified via high throughput screening of an encoded combinatorial compound collection. Synthesis and assay of a series of analogs highlighted essential structural features of the initial hit. Optimization resulted in an A(2B) antagonist (2i) which exhibited potent activity in a cAMP accumulation assay (5.

View Article and Find Full Text PDF

The discovery, synthesis and preliminary structure-activity relationships (SARs) of a novel class of CB1 antagonists is described. Initial optimization of benzimidazole-based screening hit 4 led to the identification of 'inverted' indole-based lead compound 18c with improved properties versus compound 4 including reduced AlogP, improved microsomal stability and improved aqueous solubility. Compound 18c demonstrates in vivo CB1 antagonist efficacy (CB1 agonist induced hypothermia model) and is orally bioavailable in rat.

View Article and Find Full Text PDF

The discovery, synthesis, and preliminary structure-activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS technology, had good activity in a V3 binding assay (IC50=0.20 microM), but less than desirable physicochemical properties.

View Article and Find Full Text PDF

A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-gamma (INF-gamma) production.

View Article and Find Full Text PDF

The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity.

View Article and Find Full Text PDF

The chemokine receptor CXCR2 is involved in different inflammatory diseases, like chronic obstructive pulmonary disease, psoriasis, rheumatoid arthritis, and ulcerative colitis; therefore, it is considered an attractive drug target. Different classes of small CXCR2 antagonists have been developed. In this study, we selected seven CXCR2 antagonists from the diarylurea, imidazolylpyrimide, and thiazolopyrimidine class and studied their mechanisms of action at human CXCR2.

View Article and Find Full Text PDF

An imidazolylpyrimidine was identified in a CXCR2 chemokine receptor antagonist screen and was optimized for potency, in vitro metabolic stability, and oral bioavailability. It was found that subtle structural modification within the series affected the oral bioavailability. Potent and orally available CXCR2 antagonists are herein reported.

View Article and Find Full Text PDF

Potent small molecule biaryl diketopiperazine FSH receptor agonists such as 10c (EC(50)=13 nM) and 11f (EC(50)=1.2 nM) were discovered through the design, synthesis and evaluation of three biaryl diketopiperazine optimization libraries with over 300 compounds. These libraries were prepared via solid-phase parallel synthesis using a cyclization-release method.

View Article and Find Full Text PDF

High-throughput screening of two million compounds in 37 distinct encoded combinatorial libraries using FSH receptor transfected cells provided small molecule agonists such as 1 (EC(50)=3 microM) and 2 (EC(50)=3.9 microM), based on which a focused combinatorial library with a total of 31372 compounds was designed, synthesized, and screened to reveal 72 novel biaryl FSH receptor agonists such as 8a-c as well as a unique combinatorial SAR.

View Article and Find Full Text PDF

Structure-activity studies on benzamide 1 obtained from library screening led to the discovery of a novel series of potent and selective glycine transporter type-2 inhibitors.

View Article and Find Full Text PDF

The large-scale application of combinatorial chemistry to drug discovery is an endeavor that is now more than ten years old. The growth of chemical libraries together with the influx of novel genomic targets has led to a reconstruction of the drug-screening paradigm. The drug discovery industry faces a post-genomic world where the interplay between tens-of-thousands of proteins must be addressed.

View Article and Find Full Text PDF