The transformative impact of modern computational paradigms and technologies, such as high-performance computing (HPC), quantum computing, and cloud computing, has opened up profound new opportunities for scientific simulations. Scalable computational chemistry is one beneficiary of this technological progress. The main focus of this paper is on the performance of various quantum chemical formulations, ranging from low-order methods to high-accuracy approaches, implemented in different computational chemistry packages and libraries, such as NWChem, NWChemEx, Scalable Predictive Methods for Excitations and Correlated Phenomena, ExaChem, and Fermi-Löwdin orbital self-interaction correction on Azure Quantum Elements, Microsoft's cloud services platform for scientific discovery.
View Article and Find Full Text PDFThe interactions between the electronic magnetic moment and the nuclear spin moment, i.e., magnetic hyperfine (HF) interactions, play an important role in understanding electronic properties of magnetic systems and in realizing platforms for quantum information science applications.
View Article and Find Full Text PDFIncorporating self-interaction corrections (SIC) significantly improves chemical reaction barrier height predictions made using density functional theory methods. We present a detailed orbital-by-orbital analysis of these corrections for three semi-local density functional approximations (DFAs) situated on the three lowest rungs of Jacob's ladder of approximations. The analysis is based on Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) calculations performed at several steps along the reaction pathway from the reactants (R) to the transition state (TS) to the products (P) for four representative reactions selected from the BH76 benchmark set.
View Article and Find Full Text PDFπ-conjugated polymers have been used in a wide range of practical applications, partly due to their unique properties that originate in the delocalization of electrons through the polymer backbone. The level of delocalization can be characterized by the induced bond length alternation (BLA), with shorter BLA connected with strong delocalization and vice versa. The accurate description of this structural parameter can be considered a benchmark for testing the capability of different electronic structure methods for self-interaction error (SIE) removal and electron correlation inclusion.
View Article and Find Full Text PDFAn Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution.
View Article and Find Full Text PDFA new algorithm based on a rigorous theorem and quantum data computationally mined from element 118 guarantees automated construction of initial Fermi-Löwdin-Orbital (FLO) starting points for all elements in the Periodic Table. It defines a means for constructing a small library of scalable FLOs for universal use in molecular and solid-state calculations. The method can be systematically improved for greater efficiency and for applications to excited states such as x-ray excitations and optically silent excitations.
View Article and Find Full Text PDFComplexes containing a transition metal atom with a 3d-3d electron configuration typically have two low-lying, high-spin (HS) and low-spin (LS) states. The adiabatic energy difference between these states, known as the spin-crossover energy, is small enough to pose a challenge even for electronic structure methods that are well known for their accuracy and reliability. In this work, we analyze the quality of electronic structure approximations for spin-crossover energies of iron complexes with four different ligands by comparing energies from self-consistent and post-self-consistent calculations for methods based on the random phase approximation and the Fermi-Löwdin self-interaction correction.
View Article and Find Full Text PDFDensity functional theory (DFT) suffers from self-interaction errors (SIEs) that generally result in the underestimation of chemical reaction barrier heights. This is commonly attributed to the tendency of density functional approximations to overstabilize delocalized densities that typically occur in the stretched bonds of transition state structures. The Perdew-Zunger self-interaction correction (PZSIC) and locally scaled self-interaction correction (LSIC) improve the prediction of barrier heights of chemical reactions, with LSIC giving better accuracy than PZSIC on average.
View Article and Find Full Text PDFThis paper introduces the use of complex Fermi orbital descriptors (FODs) in the Fermi-Löwdin self-interaction-corrected density functional theory (FLOSIC). With complex FODs, the Fermi-Löwdin orbitals (FLOs) that are used to evaluate the SIC correction to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the local spin density approximation produce total energies that are generally lower than the corresponding energies found with FLOSIC restricted to real orbitals (rFLOSIC).
View Article and Find Full Text PDFDensity functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu, Zn, Zn, and Mn in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew-Zunger self-interaction correction (PZ-SIC) in the Fermi-Löwdin Orbital (FLO) SIC framework.
View Article and Find Full Text PDFWe study the effect of self-interaction errors on the barrier heights of chemical reactions. For this purpose, we use the well-known Perdew-Zunger self-interaction-correction (PZSIC) [J. P.
View Article and Find Full Text PDFWe examine the effect of removing self-interaction error (SIE) on the calculation of molecular polarizabilities in the local spin density (LSDA) and generalized gradient approximations (GGA). To this end, we utilize a database of 132 molecules taken from a recent benchmark study [Hait and Head-Gordon, Phys. Chem.
View Article and Find Full Text PDFWe investigate the electronic structure of a planar mononuclear Cu-based molecule [Cu(CHS)] in two oxidation states (z = -2, -1) using density-functional theory (DFT) with Fermi-Löwdin orbital (FLO) self-interaction correction (SIC). The dianionic Cu-based molecule was proposed to be a promising qubit candidate. Self-interaction error within approximate DFT functionals renders severe delocalization of electron and spin densities arising from 3d orbitals.
View Article and Find Full Text PDFThe Perdew-Zunger self-interaction correction (PZ-SIC) improves the performance of density functional approximations for the properties that involve significant self-interaction error (SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by local scaling self-interaction correction (LSIC) of the PZ-SIC to the local spin density approximation (LSDA). Here, we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of the atomic number Z in the asymptotic expansion of the exchange-correlation (xc) energy for atoms.
View Article and Find Full Text PDFWe study the importance of self-interaction errors in density functional approximations for various water-ion clusters. We have employed the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method in conjunction with the local spin-density approximation, Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and strongly constrained and appropriately normed (SCAN) meta-GGA to describe binding energies of hydrogen-bonded water-ion clusters, i.e.
View Article and Find Full Text PDFThe Perdew-Zunger self-interaction correction (PZ-SIC) removes unphysical electron self-interaction from calculations employing standard density functional approximations. Doing so improves many computed properties, bringing them into better agreement with experimental observations or with results from high-level quantum chemistry calculations. However, while PZ-SIC generally corrects in the right direction relative to the corresponding reference values, in many cases, it over-corrects.
View Article and Find Full Text PDF(Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them compared to quasi-particle calculations. The inaccuracy for the HO is attributed to SIE inherent in DFAs.
View Article and Find Full Text PDFWe studied the effect of self-interaction error (SIE) on the static dipole polarizabilities of water clusters modeled with three increasingly sophisticated, non-empirical density functional approximations (DFAs), viz., the local spin density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA, using the Perdew-Zunger self-interaction-correction (PZ-SIC) energy functional in the Fermi-Löwdin orbital SIC framework. Our results show that while all three DFAs overestimate the cluster polarizabilities, the description systematically improves from LDA to PBE to SCAN.
View Article and Find Full Text PDFDensity functional theory (DFT)-based methods often significantly underpredict chemical reaction barriers compared with experiments because of the tendency of DFT to overstabilize transition states with stretched bonds due to the impact of unphysical electron self-interaction. However, many reactions have early or late transition states where the transition state geometry closely resembles the reactants or products, respectively. The role of self-interaction in those cases is not known.
View Article and Find Full Text PDFThe Perdew-Zunger (PZ) self-interaction correction (SIC) was designed to correct the one-electron limit of any approximate density functional for the exchange-correlation (xc) energy, while yielding no correction to the exact functional. Unfortunately, it spoils the slowly varying (in space) limits of the uncorrected approximate functionals, where those functionals are right by construction. The right limits can be restored by locally scaling down the energy density of the PZ SIC in many-electron regions, but then a spurious correction to the exact functional would be found unless the self-Hartree and exact self-xc terms of the PZ SIC energy density were expressed in the same gauge.
View Article and Find Full Text PDFWe gauge the importance of self-interaction errors in density functional approximations (DFAs) for the case of water clusters. To this end, we used the Fermi-Löwdin orbital self-interaction correction method (FLOSIC) to calculate the binding energy of clusters of up to eight water molecules. Three representative DFAs of the local, generalized gradient, and metageneralized gradient families [i.
View Article and Find Full Text PDFAccurate description of the excess charge in water cluster anions is challenging for standard semi-local and (global) hybrid density functional approximations (DFAs). Using the recent unitary invariant implementation of the Perdew-Zunger self-interaction correction (SIC) method using Fermi-Löwdin orbitals, we assess the effect of self-interaction error on the vertical detachment energies of water cluster anions with the local spin density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the strongly constrained and appropriately normed (SCAN) meta-GGA functionals. Our results show that for the relative energies of isomers with respect to reference CCSD(T) values, the uncorrected SCAN functional has the smallest deviation of 21 meV, better than that for the MP2 method.
View Article and Find Full Text PDFSelf-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here, we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SICs should be applied.
View Article and Find Full Text PDFSpurious electron self-interaction in density functional approximations (DFAs) can lead to inaccurate predictions of charge transfer in heteronuclear molecules that manifest as errors in calculated electrostatic dipoles. Here, we show the magnitude of these errors on dipoles computed for a diverse set of 47 molecules taken from the recent benchmark study of Hait and Head-Gordon [J. Chem.
View Article and Find Full Text PDFDespite the success of density functional approximations (DFAs) in describing the electronic properties of many-electron systems, the most widely used approximations suffer from self-interaction errors (SIEs) that limit their predictive power. Here, we describe the effects of removing SIE from the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation using the Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) method. FLOSIC is a size-extensive implementation of the Perdew-Zunger self-interaction correction (PZ-SIC) formalism.
View Article and Find Full Text PDF