Publications by authors named "Kobe Florquin"

Entry into the S phase of the cell cycle is controlled by E2F transcription factors that induce the transcription of genes required for cell cycle progression and DNA replication. Although the E2F pathway is highly conserved in higher eukaryotes, only a few E2F target genes have been experimentally validated in plants. We have combined microarray analysis and bioinformatics tools to identify plant E2F-responsive genes.

View Article and Find Full Text PDF

DNA encodes at least two independent levels of functional information. The first level is for encoding proteins and sequence targets for DNA-binding factors, while the second one is contained in the physical and structural properties of the DNA molecule itself. Although the physical and structural properties are ultimately determined by the nucleotide sequence itself, the cell exploits these properties in a way in which the sequence itself plays no role other than to support or facilitate certain spatial structures.

View Article and Find Full Text PDF

Previously we have shown that overexpression of the heterodimeric E2Fa-DPa transcription factor in Arabidopsis thaliana results in ectopic cell division, increased endoreduplication, and an early arrest in development. To gain a better insight into the phenotypic behavior of E2Fa-DPa transgenic plants and to identify E2Fa-DPa target genes, a transcriptomic microarray analysis was performed. Out of 4,390 unique genes, a total of 188 had a twofold or more up- (84) or down-regulated (104) expression level in E2Fa-DPa transgenic plants compared to wild-type lines.

View Article and Find Full Text PDF

The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward.

View Article and Find Full Text PDF

The type I MADS-box genes constitute a largely unexplored subfamily of the extensively studied MADS-box gene family, well known for its role in flower development. Genes of the type I MADS-box subfamily possess the characteristic MADS box but are distinguished from type II MADS-box genes by the absence of the keratin-like box. In this in silico study, we have structurally annotated all 47 members of the type I MADS-box gene family in Arabidopsis thaliana and exerted a thorough analysis of the C-terminal regions of the translated proteins.

View Article and Find Full Text PDF