We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
August 2011
Rationale And Objectives: Challenges remain in the imaging of the lungs of free-breathing mice. Although computed tomographic (CT) imaging is near optimal from a contrast perspective, the rapid respiration rate, limited temporal resolution, and inflexible x-ray pulse control of most micro-CT scanners limit their utility in pulmonary imaging. Carbon nanotubes (CNTs) have permitted the development of field emission cathodes, with rapid switching and precise pulse control.
View Article and Find Full Text PDF