Hybrid lenses are created by combining metasurface optics with refractive optics, where refractive elements contribute optical power, while metasurfaces correct optical aberrations. We present an algorithm for optimizing metasurface nanostructures within a hybrid lens, allowing flexible interleaving of metasurface and refractive optics in the optical train. To efficiently optimize metasurface nanostructures, we develop a scalar field, ray-wave hybrid propagation method.
View Article and Find Full Text PDFA method for designing multi-metasurface layouts for optical aberration correction is presented. All-dielectric metasurfaces are combined with conventional refractive optics to form a hybrid lens. The optical power of a hybrid lens is primarily provided by refractive optics, and metasurfaces are optimized to control optical aberrations.
View Article and Find Full Text PDFThis publisher's note contains corrections to [Opt. Express30, 28438 (2022)10.1364/OE.
View Article and Find Full Text PDFAlthough hot-carrier-based photodetection using plasmonic effects has been widely investigated, photodetectors of this type with an external quantum efficiency (EQE) and an active area of mm remain out of reach even in the visible frequencies. In this work, a novel hot-electron-based, non-trench-type photodetector exploiting pure photoexcitation in a thin aluminum (Al) film and leaky plasmonic modes at and between its heterojunctions is proposed, analyzed, and experimentally demonstrated. Combining diffracted-order-resolved analytical analysis and numerical computations unravels the optical absorption mechanism of the innovative design.
View Article and Find Full Text PDFA new metric for imaging systems, the volumetric imaging efficiency (VIE), is introduced. It compares the compactness and capacity of an imager against fundamental limits imposed by diffraction. Two models are proposed for this fundamental limit based on an idealized thin-lens and the optical volume required to form diffraction-limited images.
View Article and Find Full Text PDFPlasmon-enhanced sensitive photodetection using plasmonic noble metals has been widely investigated; however, aluminum (Al)-based photoelectric conversion concurrently utilizing photonic and plasmonic approaches is less explored. Here, photodetection driven by quasi-localized plasmon resonance (QLPR) is investigated. Concurrent photonic and plasmonic contributions to strong absorption in the active region require delocalized, slow-propagating resonant electric field to occur around the peripheries of Al nano-structures and depend on the spatial distribution of diffraction efficiencies of all space harmonics.
View Article and Find Full Text PDF